A046177 Squares (A000290) which are also hexagonal numbers (A000384).
1, 1225, 1413721, 1631432881, 1882672131025, 2172602007770041, 2507180834294496361, 2893284510173841030625, 3338847817559778254844961, 3853027488179473932250054441, 4446390382511295358038307980025, 5131130648390546663702275158894481
Offset: 1
References
- M. Rignaux, Query 2175, L'Intermédiaire des Mathématiciens, 24 (1917), 80.
Links
- Colin Barker, Table of n, a(n) for n = 1..327
- Eric Weisstein's World of Mathematics, Hexagonal Square Number.
- Eric Weisstein's World of Mathematics, Square Triangular Number.
- Index entries for linear recurrences with constant coefficients, signature (1155,-1155,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{1155, -1155, 1}, {1, 1225, 1413721}, 11] (* Ant King, Nov 08 2011 *)
-
PARI
Vec(x*(1+70*x+x^2)/((1-x)*(1-1154*x+x^2)) + O(x^100)) \\ Colin Barker, Jan 16 2015
Formula
a(n) = A001110(2n-1). - Alexander Adamchuk, Nov 06 2007
a(n+1) = 577*a(n)+36+204*(8*a(n)^2+a(n))^0.5 for n>=1 (a(0)=1). - Richard Choulet, May 01 2009
a(n+2) = 1154*a(n+1) - a(n) + 72 for n>=0. - Richard Choulet, May 01 2009
From Ant King, Nov 07 2011: (Start)
a(n) = 1155*a(n-1) - 1155*a(n-2) + a(n-3).
a(n) = 1/32*((1 + sqrt(2))^(8*n - 4) + (1 - sqrt(2))^(8*n-4) - 2).
a(n) = floor(1/32*(1 + sqrt(2))^(8*n - 4)).
a(n) = 1/32*((tan(3*Pi/8))^(8*n-4) + (tan(Pi/8))^(8*n-4) - 2).
a(n) = floor(1/32*(tan(3*Pi/8))^(8*n-4)).
G.f.: x*(1 + 70*x + x^2)/((1 - x)*(1 - 1154*x + x^2)).
(End)
a(n) = A096979(4*n - 3). - Ivan N. Ianakiev, Sep 05 2016
a(n) = (1/2) * (A002315(n))^2 * ((A002315(n))^2 + 1) = ((2*x + 1)*sqrt(x^2 + (x+1)^2))^2, where x = (1/2)*(A002315(n)-1). - Ivan N. Ianakiev, Sep 05 2016
Comments