cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A185080 a(n) = 6 * binomial(2*n,n-1) + binomial(2*n-1,n).

Original entry on oeis.org

7, 27, 100, 371, 1386, 5214, 19734, 75075, 286858, 1100138, 4232592, 16328942, 63146500, 244711260, 950094810, 3694876515, 14390571690, 56122547250, 219140635560, 856617714810, 3351878581740, 13127747882340, 51458942047500, 201869999056206, 792497263436676
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 26 2012

Keywords

Crossrefs

Programs

  • Haskell
    a185080 n = 6 * a007318 (2 * n) (n - 1) + a007318 (2 * n - 1) n
    
  • Magma
    [(13*n+1)*Catalan(n)/2: n in [1..40]]; // G. C. Greubel, Apr 03 2024
    
  • Mathematica
    Table[6Binomial[2n,n-1]+Binomial[2n-1,n],{n,30}] (* Harvey P. Dale, Dec 28 2012 *)
  • SageMath
    [(13*n+1)*binomial(2*n,n)/(2*n+2) for n in range(1,41)] # G. C. Greubel, Apr 03 2024

Formula

a(n) = A046902(2*n,n) (Central terms of Clark's triangle).
a(n) = 6 * A007318(2*n,n-1) + A007318(2*n-1,n).
From G. C. Greubel, Apr 03 2024: (Start)
a(n) = (13*n+1)*A000108(n)/2.
a(n) = (2 + 22*n - 52*n^2)*a(n-1)/(12 - n - 13*n^2).
G.f.: ((6 - 11*x)*sqrt(1-4*x) - (1-4*x)*(6+x))/(2*x*(1-4*x)).
E.g.f.: (1/2)*(-1 + exp(2*x)*(BesselI(0, 2*x) + 12*BesselI(1, 2*x))).(End)

A261682 a(n) = 2^n+(1+(n mod 2)/2)*C(n+1,floor((n+(n mod 2))/2))-1.

Original entry on oeis.org

1, 4, 6, 16, 25, 61, 98, 232, 381, 889, 1485, 3433, 5811, 13339, 22818, 52072, 89845, 204001, 354521, 801421, 1401291, 3155299, 5546381, 12444841, 21977515, 49155331, 87167163, 194392627, 345994215, 769547191, 1374282018, 3049104232, 5461770405, 12090343921
Offset: 0

Views

Author

N. J. A. Sloane, Sep 04 2015

Keywords

Programs

  • Maple
    a:= n-> 2^n +((2+irem(n, 2))/2)*binomial(n+1, ceil(n/2))-1:
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 05 2015
  • Mathematica
    Table[If[EvenQ@ n, 2^n + Binomial[n + 1, n/2] - 1, 2^n + (3/2) Binomial[n + 1, (n + 1)/2] - 1], {n, 0, 33}] (* Michael De Vlieger, Sep 24 2015 *)
  • PARI
    a(n) = if (n%2, 2^n+(3/2)*binomial(n+1,(n+1)/2)-1, 2^n+binomial(n+1,n/2)-1); \\ Michel Marcus, Sep 05 2015

Formula

If n mod 2 = 0, then a(n) = 2^n+binomial(n+1,n/2)-1, otherwise a(n) = 2^n+(3/2)*binomial(n+1,(n+1)/2)-1.
If n mod 2 = 0, then a(n+2) = a(n+1) + a(n) + A000108(n+1) - 2^n - 1; otherwise, a(n+2) = a(n+1) + a(n) + A046224(n+2) - 2^n - 1. - Eric Werley, Sep 16 2015
Conjecture: -(n+2)*(15*n^2-29*n-56)*a(n) +9*(5*n^3-3*n^2-24*n-20)*a(n-1) +2*(15*n^3-14*n^2-219*n+158)*a(n-2) +36*(-5*n^3+8*n^2+31*n-38)*a(n-3) +8*(n-2)*(15*n^2+n-70)*a(n-4)=0. - R. J. Mathar, Jan 04 2017

Extensions

New name from Wesley Ivan Hurt, May 02 2021
Showing 1-2 of 2 results.