A185080 a(n) = 6 * binomial(2*n,n-1) + binomial(2*n-1,n).
7, 27, 100, 371, 1386, 5214, 19734, 75075, 286858, 1100138, 4232592, 16328942, 63146500, 244711260, 950094810, 3694876515, 14390571690, 56122547250, 219140635560, 856617714810, 3351878581740, 13127747882340, 51458942047500, 201869999056206, 792497263436676
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a185080 n = 6 * a007318 (2 * n) (n - 1) + a007318 (2 * n - 1) n
-
Magma
[(13*n+1)*Catalan(n)/2: n in [1..40]]; // G. C. Greubel, Apr 03 2024
-
Mathematica
Table[6Binomial[2n,n-1]+Binomial[2n-1,n],{n,30}] (* Harvey P. Dale, Dec 28 2012 *)
-
SageMath
[(13*n+1)*binomial(2*n,n)/(2*n+2) for n in range(1,41)] # G. C. Greubel, Apr 03 2024
Formula
a(n) = A046902(2*n,n) (Central terms of Clark's triangle).
From G. C. Greubel, Apr 03 2024: (Start)
a(n) = (13*n+1)*A000108(n)/2.
a(n) = (2 + 22*n - 52*n^2)*a(n-1)/(12 - n - 13*n^2).
G.f.: ((6 - 11*x)*sqrt(1-4*x) - (1-4*x)*(6+x))/(2*x*(1-4*x)).
E.g.f.: (1/2)*(-1 + exp(2*x)*(BesselI(0, 2*x) + 12*BesselI(1, 2*x))).(End)