cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A046449 Smallest composite number with n distinct prime factors with property that the concatenation of its distinct prime factors is a palindrome.

Original entry on oeis.org

4, 39, 429, 5565, 94605, 1040655, 2332655745, 178516966485, 4105890229155, 867388559982945, 37297708079266635, 1529206031249932035
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Comments

Subsequence of A046447. - Michel Marcus, Dec 06 2014

Examples

			a(5)=94605 has 5 distinct factors 3 * 5 * 7 * 17 * 53 and 3571753 is palindromic.
		

Crossrefs

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com), Mar 11 2000

A046450 Concatenation of prime factors of palindromic composite is a palindrome.

Original entry on oeis.org

4, 8, 9, 121, 343, 1331, 10001, 10201, 14641, 36763, 1030301, 1037301, 1226221, 9396939, 104060401, 12467976421, 14432823441, 93969696939, 119092290911, 1030507050301, 1120237320211, 1225559555221, 1234469644321, 1334459544331, 100330272033001, 101222252222101
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Examples

			E.g., 14432823441 = 3 * 3 * 281 * 313 * 18233 -> 3328131318233 is palindromic.
		

Crossrefs

Programs

  • Mathematica
    d[n_] := IntegerDigits[n]; co[n_, k_] := Nest[Flatten[d[{#, n}]] &, n, k - 1]; t = {}; Do[If[! PrimeQ[n] && Reverse[x = d[n]] == x && Reverse[y = Flatten[d[co @@@ FactorInteger[n]]]] == y, AppendTo[t, n]], {n, 2, 10^7}]; t (* Jayanta Basu, Jun 24 2013 *)

Extensions

Corrected by Charles R Greathouse IV, Apr 23 2010
a(18)-a(24) from Donovan Johnson, May 03 2010
a(25)-a(26) from Donovan Johnson, Aug 09 2011

A046448 Squarefree nonprimes with property that the concatenation of the prime factors is a palindrome.

Original entry on oeis.org

1, 39, 69, 119, 129, 159, 219, 249, 259, 329, 339, 403, 429, 469, 669, 679, 795, 1207, 1309, 1329, 1533, 1547, 1589, 1703, 2319, 2321, 2359, 2649, 2701, 3039, 3421, 3503, 3629, 3633, 3639, 3729, 3899, 4303, 4607, 4839, 5289, 5295, 5565, 5603, 5739, 6209
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Examples

			E.g., 429 = 3 * 11 * 13 -> 31113 is palindromic.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[6210], ! PrimeQ[#] && SquareFreeQ[#] && Reverse[x = Flatten[IntegerDigits[First /@ FactorInteger[#]]]] == x &] (* Jayanta Basu, Jun 24 2013 *)
    Select[Range[6500],!PrimeQ[#]&&SquareFreeQ[#]&&PalindromeQ[ FromDigits[ Flatten[ IntegerDigits/@ FactorInteger[#][[All,1]]]]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 25 2020 *)

Extensions

Definition clarified by N. J. A. Sloane, Oct 25 2020

A046451 Semiprimes whose prime factors, when concatenated, yield a palindrome.

Original entry on oeis.org

4, 9, 25, 39, 49, 69, 119, 121, 129, 159, 219, 249, 259, 329, 339, 403, 469, 669, 679, 1207, 1329, 1589, 1703, 2319, 2321, 2359, 2649, 2701, 3039, 3421, 3503, 3629, 3639, 3899, 4303, 4607, 4839, 5603, 5739, 6209, 6401, 6979, 7269, 7663, 7819, 8203, 8519
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Examples

			3899 = 7 * 557 -> 7557 is palindromic.
		

Crossrefs

Cf. A046447.

Programs

  • Mathematica
    d[n_] := IntegerDigits[n]; co[n_, k_] := Nest[Flatten[d[{#, n}]] &, n, k - 1]; Select[Range[8520], PrimeOmega[#] == 2 && Reverse[x = Flatten[d[co @@@ FactorInteger[#]]]] == x &] (* Jayanta Basu, Jun 26 2013 *)
    Select[Range[9000],PrimeOmega[#]==2&&PalindromeQ[FromDigits[ Flatten[ IntegerDigits/@FactorInteger[#][[All,1]]]]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 19 2020 *)

Extensions

Edited by Charles R Greathouse IV, Apr 28 2010

A046452 Numbers that are the product of 3 prime factors whose concatenation is a palindrome.

Original entry on oeis.org

8, 27, 125, 343, 429, 507, 795, 1309, 1331, 1533, 1547, 1587, 2023, 2097, 3633, 3729, 3897, 5289, 5295, 5547, 6597, 7833, 8029, 8427, 9583, 9795, 12207, 12795, 13489, 13573, 14133, 14147, 14295, 15463, 15549, 15987, 16233, 17295, 20667, 22139, 28273, 28609, 28847, 28951
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Comments

Sequence is the intersection of A046447 and A014612 without the initial term. - Charles R Greathouse IV, Apr 23 2010
Apart from a(1) all terms are odd. Apart from a(3) 5 divides a(n) if and only if 15 divides a(n). - Charles R Greathouse IV, Jan 04 2013

Examples

			14133 = 3 * 7 * 673 -> 37673 is palindromic.
		

Crossrefs

Cf. A046447.

Programs

  • Maple
    Nmax:= 10000; # to get all a(n) <= Nmax
    R:= {8}:
    for i from 2 do
       a:= ithprime(i);
       if a^3 > Nmax then break end if;
       m:= length(a); tm:= 10^m;
       al:= convert(a,base,10);
       ar:= add(10^(m-k)*al[k],k=1..m);
       for j from i  do
         b:= ithprime(j);
         if a*b^2 > Nmax then break end if;
         bl:= convert(b,base,10);
         k0:= ceil((b-ar)/tm);
         for k from k0 do
           c:= ar + k*tm;
           if a*b*c > Nmax then break end if;
           if not isprime(c) then next end if;
           L:= [op(convert(c,base,10)),op(bl),op(al)];
           if ListTools:-Reverse(L)=L then
             R:= R union {a*b*c}
           end if;
         end do
       end do
    end do:
    R;  # Robert Israel, Jan 05 2013
  • Mathematica
    pfpQ[n_]:=Module[{c=Flatten[IntegerDigits/@Table[#[[1]],{#[[2]]}]&/@ FactorInteger[ n]]},c==Reverse[c]]; Select[Range[30000],PrimeOmega[#] == 3&&pfpQ[#]&] (* Harvey P. Dale, Jan 05 2013 *)
  • PARI
    ispal(n)=n=digits(n);for(i=1,#n\2,if(n[i]!=n[#n+1-i],return(0)));1
    list(lim)=my(v=List([8]),t);forprime(p=3,lim\9, forprime(q=3,min(lim\(3*p),p), t=p*q; forprime(r=3,min(lim\t,q), if(ispal(eval(Str(r,q,p))), listput(v,t*r))))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jan 04 2013

Extensions

Missing a(16) from Charles R Greathouse IV on the advice of Harvey P. Dale, Jan 04 2013

A046453 Composite numbers with four prime factors (not necessarily distinct) whose concatenation yields a palindrome.

Original entry on oeis.org

16, 81, 625, 2401, 3975, 4719, 5565, 6591, 8745, 10731, 14399, 14641, 16863, 20111, 34391, 36501, 39963, 41019, 46179, 47229, 48231, 60813, 61761, 62991, 69027, 109179, 113631, 116475, 143991, 158985, 159777, 162409, 164145, 167571, 183159, 184065
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Examples

			164145 = 3 * 5 * 31 * 353 -> 3531353 is palindromic.
		

Crossrefs

Intersection of A033993 and A046447.

Programs

  • Mathematica
    pal4Q[n_]:=Module[{ds=Flatten[IntegerDigits/@(Table[First[#],{Last[ #]}]&/@ FactorInteger[n])]},PrimeOmega[n]==4&&ds==Reverse[ds]]; Select[ Range[190000],pal4Q] (* Harvey P. Dale, Nov 12 2011 *)

Extensions

One more term from Harvey P. Dale, Nov 12 2011

A046454 Concatenation of the 5 prime factors of composite a(n) is a palindrome.

Original entry on oeis.org

32, 243, 3125, 16807, 19875, 38955, 51909, 75117, 85683, 94605, 96195, 158389, 161051, 182427, 185493, 205905, 261443, 261555, 320385, 323253, 397047, 439593, 451209, 504357, 507969, 584647, 613977, 617799, 718977, 719955, 795417, 839523
Offset: 0

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Examples

			320385 = 3 * 5 * 13 * 31 * 53 -> 35133153 is palindromic.
		

Crossrefs

Cf. A046447.

A046455 Concatenation of the 6 prime factors of composite a(n) is a palindrome.

Original entry on oeis.org

64, 729, 15625, 99375, 117649, 272685, 525819, 570999, 1040655, 1058145, 1113879, 1229865, 1608285, 1742279, 1771561, 2006697, 2040423, 2262771, 2371551, 3101259, 3398759, 3599775, 4835523, 4963299, 5039685, 5495301
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Examples

			3398759 = 7 * 13 * 13 * 13 * 13 * 17 -> 71313131317 is palindromic.
		

Crossrefs

Cf. A046447.

Extensions

Edited by Charles R Greathouse IV, Apr 28 2010

A046456 Concatenation of the 7 prime factors of composite a(n) is a palindrome.

Original entry on oeis.org

128, 2187, 78125, 496875, 823543, 1908795, 3680733, 6280989, 11447205, 11639595, 14480427, 15839397, 15988245, 17998875, 19165069, 19487171, 22073667, 22444653, 27340845, 30830163, 35277795, 38975433, 44183867
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Examples

			17998875 = 3 * 3 * 3 * 5 * 5 * 5 * 5333 -> 3335555333 is palindromic.
		

Crossrefs

Cf. A046447.

Extensions

Edited by Charles R Greathouse IV, Apr 28 2010

A046457 Concatenation of the 8 prime factors of composite a(n) is a palindrome.

Original entry on oeis.org

256, 6561, 390625, 2484375, 5764801, 13361565, 25765131, 69090879, 89994375, 110875779, 125919255, 128035545, 188245551, 207847185, 210815759, 214358881, 242810337, 246891183, 246944565, 272828031, 400792119, 464794365, 475376391
Offset: 0

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Examples

			2484375 = 3 * 5 * 5 * 5 * 5 * 5 * 5 * 53 -> 355555553 is palindromic.
		

Crossrefs

Cf. A046447.

Programs

  • Mathematica
    For[n=2,n<1000000,n++,factors=FactorInteger[n]; If[Total[Transpose[factors][[2]]]!=8,Continue[]];digits={}; For[i=1,i<=Length[factors],i++, digits=Join[digits, Flatten[Table[IntegerDigits[factors[[i,1]]],{factors[[i,2]]}]]];]; If[digits==Reverse[digits],Print[n]];]; (* Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 17 2006 *)

Extensions

More terms from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Aug 17 2006
Showing 1-10 of 11 results. Next