cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A046447 Apart from initial term, composite numbers with the property that the concatenation of their prime factors is a palindrome.

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 27, 32, 39, 49, 64, 69, 81, 119, 121, 125, 128, 129, 159, 219, 243, 249, 256, 259, 329, 339, 343, 403, 429, 469, 507, 512, 625, 669, 679, 729, 795, 1024, 1207, 1309, 1329, 1331, 1533, 1547, 1587, 1589, 1703, 2023, 2048, 2097, 2187, 2319
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Comments

Prime factors considered with multiplicity. - Harvey P. Dale, Apr 20 2025

Examples

			81 is a term because 81 = 3 * 3 * 3 * 3 -> 3333 is palindromic.
		

Crossrefs

Programs

  • Haskell
    a046447 n = a046447_list !! (n-1)
    a046447_list = 1 : filter f [1..] where
       f x = length ps > 1 && ps' == reverse ps'
             where ps' = concatMap show ps; ps = a027746_row x
    -- Reinhard Zumkeller, May 02 2014
    
  • Mathematica
    concat[n_]:=Flatten[Table[IntegerDigits[First[n]],{Last[n]}]]; palQ[n_]:= Module[{x=Flatten[concat/@FactorInteger[n]]},x==Reverse[x]&&!PrimeQ[n]]; Select[Range[2500],palQ] (* Harvey P. Dale, May 24 2011 *)
    cpfpQ[n_]:=PalindromeQ[FromDigits[Flatten[IntegerDigits/@Flatten[PadRight[{},#[[2]],#[[1]]]&/@FactorInteger[n]]]]]; Join[{1},Select[Range[2500],CompositeQ[ #]&&cpfpQ[#]&]] (* Harvey P. Dale, Apr 20 2025 *)
  • Python
    from sympy import factorint, isprime
    A046447_list = [1]
    for n in range(4, 10**6):
        if not isprime(n):
            s = ''.join([str(p)*e for p, e in sorted(factorint(n).items())])
            if s == s[::-1]:
                A046447_list.append(n) # Chai Wah Wu, Jan 03 2015

Extensions

Definition slightly modified by Harvey P. Dale, Apr 20 2025

A046449 Smallest composite number with n distinct prime factors with property that the concatenation of its distinct prime factors is a palindrome.

Original entry on oeis.org

4, 39, 429, 5565, 94605, 1040655, 2332655745, 178516966485, 4105890229155, 867388559982945, 37297708079266635, 1529206031249932035
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Comments

Subsequence of A046447. - Michel Marcus, Dec 06 2014

Examples

			a(5)=94605 has 5 distinct factors 3 * 5 * 7 * 17 * 53 and 3571753 is palindromic.
		

Crossrefs

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com), Mar 11 2000

A046450 Concatenation of prime factors of palindromic composite is a palindrome.

Original entry on oeis.org

4, 8, 9, 121, 343, 1331, 10001, 10201, 14641, 36763, 1030301, 1037301, 1226221, 9396939, 104060401, 12467976421, 14432823441, 93969696939, 119092290911, 1030507050301, 1120237320211, 1225559555221, 1234469644321, 1334459544331, 100330272033001, 101222252222101
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Examples

			E.g., 14432823441 = 3 * 3 * 281 * 313 * 18233 -> 3328131318233 is palindromic.
		

Crossrefs

Programs

  • Mathematica
    d[n_] := IntegerDigits[n]; co[n_, k_] := Nest[Flatten[d[{#, n}]] &, n, k - 1]; t = {}; Do[If[! PrimeQ[n] && Reverse[x = d[n]] == x && Reverse[y = Flatten[d[co @@@ FactorInteger[n]]]] == y, AppendTo[t, n]], {n, 2, 10^7}]; t (* Jayanta Basu, Jun 24 2013 *)

Extensions

Corrected by Charles R Greathouse IV, Apr 23 2010
a(18)-a(24) from Donovan Johnson, May 03 2010
a(25)-a(26) from Donovan Johnson, Aug 09 2011
Showing 1-3 of 3 results.