cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A046447 Apart from initial term, composite numbers with the property that the concatenation of their prime factors is a palindrome.

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 27, 32, 39, 49, 64, 69, 81, 119, 121, 125, 128, 129, 159, 219, 243, 249, 256, 259, 329, 339, 343, 403, 429, 469, 507, 512, 625, 669, 679, 729, 795, 1024, 1207, 1309, 1329, 1331, 1533, 1547, 1587, 1589, 1703, 2023, 2048, 2097, 2187, 2319
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Comments

Prime factors considered with multiplicity. - Harvey P. Dale, Apr 20 2025

Examples

			81 is a term because 81 = 3 * 3 * 3 * 3 -> 3333 is palindromic.
		

Crossrefs

Programs

  • Haskell
    a046447 n = a046447_list !! (n-1)
    a046447_list = 1 : filter f [1..] where
       f x = length ps > 1 && ps' == reverse ps'
             where ps' = concatMap show ps; ps = a027746_row x
    -- Reinhard Zumkeller, May 02 2014
    
  • Mathematica
    concat[n_]:=Flatten[Table[IntegerDigits[First[n]],{Last[n]}]]; palQ[n_]:= Module[{x=Flatten[concat/@FactorInteger[n]]},x==Reverse[x]&&!PrimeQ[n]]; Select[Range[2500],palQ] (* Harvey P. Dale, May 24 2011 *)
    cpfpQ[n_]:=PalindromeQ[FromDigits[Flatten[IntegerDigits/@Flatten[PadRight[{},#[[2]],#[[1]]]&/@FactorInteger[n]]]]]; Join[{1},Select[Range[2500],CompositeQ[ #]&&cpfpQ[#]&]] (* Harvey P. Dale, Apr 20 2025 *)
  • Python
    from sympy import factorint, isprime
    A046447_list = [1]
    for n in range(4, 10**6):
        if not isprime(n):
            s = ''.join([str(p)*e for p, e in sorted(factorint(n).items())])
            if s == s[::-1]:
                A046447_list.append(n) # Chai Wah Wu, Jan 03 2015

Extensions

Definition slightly modified by Harvey P. Dale, Apr 20 2025

A046449 Smallest composite number with n distinct prime factors with property that the concatenation of its distinct prime factors is a palindrome.

Original entry on oeis.org

4, 39, 429, 5565, 94605, 1040655, 2332655745, 178516966485, 4105890229155, 867388559982945, 37297708079266635, 1529206031249932035
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Comments

Subsequence of A046447. - Michel Marcus, Dec 06 2014

Examples

			a(5)=94605 has 5 distinct factors 3 * 5 * 7 * 17 * 53 and 3571753 is palindromic.
		

Crossrefs

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com), Mar 11 2000

A046448 Squarefree nonprimes with property that the concatenation of the prime factors is a palindrome.

Original entry on oeis.org

1, 39, 69, 119, 129, 159, 219, 249, 259, 329, 339, 403, 429, 469, 669, 679, 795, 1207, 1309, 1329, 1533, 1547, 1589, 1703, 2319, 2321, 2359, 2649, 2701, 3039, 3421, 3503, 3629, 3633, 3639, 3729, 3899, 4303, 4607, 4839, 5289, 5295, 5565, 5603, 5739, 6209
Offset: 1

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Examples

			E.g., 429 = 3 * 11 * 13 -> 31113 is palindromic.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[6210], ! PrimeQ[#] && SquareFreeQ[#] && Reverse[x = Flatten[IntegerDigits[First /@ FactorInteger[#]]]] == x &] (* Jayanta Basu, Jun 24 2013 *)
    Select[Range[6500],!PrimeQ[#]&&SquareFreeQ[#]&&PalindromeQ[ FromDigits[ Flatten[ IntegerDigits/@ FactorInteger[#][[All,1]]]]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 25 2020 *)

Extensions

Definition clarified by N. J. A. Sloane, Oct 25 2020

A144766 Terms in A144719 that are themselves decimal palindromes.

Original entry on oeis.org

121, 10001, 10201, 36763, 1226221, 7673767, 12467976421, 1030507050301, 1120237320211, 1225559555221, 1234469644321, 1334459544331, 100330272033001, 100827848728001, 101222252222101, 103023070320301, 121363494363121, 134312696213431, 10022212521222001
Offset: 1

Views

Author

Reikku Kulon, Sep 20 2008

Keywords

Comments

Presumed infinite, but it is difficult to find more terms.
The earlier claim that this sequence is a subsequence of A046450 was incorrect, as the counterexample of 7673767 =97*79111 shows. The reason is that A046450 checks only concatenations in the natural order of the prime factors, but this sequence here allows for both orders, 97//79111 as well as 79111//97, to be palindromic. - R. J. Mathar, Jan 22 2009
3*10^14 < a(19) <= 10022212521222001. - Donovan Johnson, Dec 08 2010

Examples

			10001 = 73 * 137; 73137 is a palindrome.
		

Crossrefs

Formula

Subsequence of (A144719 INTERSECT A046328). - R. J. Mathar, Jan 22 2009

Extensions

a(7)-a(18) from Donovan Johnson, Dec 08 2010
a(19) from Giovanni Resta, Aug 31 2018
Showing 1-4 of 4 results.