cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007770 Happy numbers: numbers whose trajectory under iteration of sum of squares of digits map (see A003132) includes 1.

Original entry on oeis.org

1, 7, 10, 13, 19, 23, 28, 31, 32, 44, 49, 68, 70, 79, 82, 86, 91, 94, 97, 100, 103, 109, 129, 130, 133, 139, 167, 176, 188, 190, 192, 193, 203, 208, 219, 226, 230, 236, 239, 262, 263, 280, 291, 293, 301, 302, 310, 313, 319, 320, 326, 329, 331, 338
Offset: 1

Views

Author

N. J. A. Sloane, A.R.McKenzie(AT)bnr.co.uk

Keywords

Comments

Sometimes called friendly numbers, but this usage is deprecated.
Gilmer shows that the lower density of this sequence is < 0.1138 and the upper density is > 0.18577. - Charles R Greathouse IV, Dec 21 2011
Corrected the upper and lower density inequalities in the comment above. - Nathan Fox, Mar 14 2013
Grundman defines the heights of the happy numbers by the number of iterations needed to reach the 1: 0, 5, 1, 2, 4, 3, 3, 2, 3, 4, 4, 2, 5, 3, 3, 2, 4, 4, 3, 1, ... (A090425(n) - 1). E.g., for n=2 the height of 7 is 5 because it needs 5 iterations: 7 -> 49 -> 97 -> 130 -> 10 -> 1. - R. J. Mathar, Jul 09 2017
El-Sedy & Siksek prove that this sequence contains arbitrarily long subsequences of consecutive terms; that is, the upper uniform density of this sequence is 1. - Charles R Greathouse IV, Sep 12 2022

Examples

			1 is OK. 2 --> 4 --> 16 --> 37 --> ... --> 4, which repeats with period 8, so never reaches 1, so 2 (and 4) are unhappy.
A correspondent suggested that 98 is happy, but it is not. It enters a cycle 98 -> 145 -> 42 -> 20 -> 4 -> 16 ->37 ->58 -> 89 -> 145 ...
		

References

  • L. E. Dickson, History of the Theory of Numbers, Vol, I: Divisibility and Primality, AMS Chelsea Publ., 1999.
  • R. K. Guy, Unsolved Problems Number Theory, Sect. E34.
  • J. N. Kapur, Reflections of a Mathematician, Chap. 34 pp. 319-324, Arya Book Depot New Delhi 1996.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 25-26.

Crossrefs

Cf. A003132 (the underlying map), A001273, A035497 (happy primes), A046519, A031177, A002025, A050972, A050973, A074902, A103369, A035502, A068571, A072494, A124095, A219667, A239320 (base 3), A240849 (base 5).
Cf. A090425 (required iterations including start and end).

Programs

  • Haskell
    a007770 n = a007770_list !! (n-1)
    a007770_list = filter ((== 1) . a103369) [1..]
    -- Reinhard Zumkeller, Aug 24 2011
    
  • Mathematica
    f[n_] := Total[IntegerDigits[n]^2]; Select[Range[400], NestWhile[f, #, UnsameQ, All] == 1 &] (* T. D. Noe, Aug 22 2011 *)
    Select[Range[1000],FixedPoint[Total[IntegerDigits[#]^2]&,#,10]==1&] (* Harvey P. Dale, Oct 09 2011 *)
    (* A example with recurrence formula to test if a number is happy *)
    a[1]=7;
    a[n_]:=Sum[(Floor[a[n-1]/10^k]-10*Floor[a[n-1]/10^(k+1)]) ^ (2) ,{k, 0,
          Floor[Log[10,a[n-1]]] }]
    Table[a[n],{n,1,10}] (* José de Jesús Camacho Medina, Mar 29 2014 *)
  • PARI
    ssd(n)=n=digits(n);sum(i=1,#n,n[i]^2)
    is(n)=while(n>6,n=ssd(n));n==1 \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    select( {is_A007770(n)=while(6M. F. Hasler, Dec 20 2024
    
  • Python
    def ssd(n): return sum(int(d)**2 for d in str(n))
    def ok(n):
      while n not in [1, 4]: n = ssd(n) # iterate until fixed point or in cycle
      return n==1
    def aupto(n): return [k for k in range(1, n+1) if ok(k)]
    print(aupto(338)) # Michael S. Branicky, Jan 07 2021

Formula

From Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 23 2009: (Start)
1) Every power 10^k is a member of the sequence.
2) If n is member the numbers obtained by placing zeros anywhere in n are members.
3) If n is member each permutation of digits of n gives another member.
4) If the repeated process of summing squared digits give a number which is already a member of sequence the starting number belongs to the sequence.
5) If n is a member the repunit consisting of n 1's is a member.
6) If n is a member delete any digit d, new number consisting of remaining digits of n and d^2 1's placed everywhere to n is a member.
7) It is conjectured that the sequence includes an infinite number of primes (see A035497).
8) For any starting number the repeated process of summing squared digits ends with 1 or gives an "8-loop" which ends with (37,58,89,145,42,20,4,16,37) (End)

A035497 Happy primes: primes that eventually reach 1 under iteration of "x -> sum of squares of digits of x".

Original entry on oeis.org

7, 13, 19, 23, 31, 79, 97, 103, 109, 139, 167, 193, 239, 263, 293, 313, 331, 367, 379, 383, 397, 409, 487, 563, 617, 653, 673, 683, 709, 739, 761, 863, 881, 907, 937, 1009, 1033, 1039, 1093, 1151, 1277, 1303, 1373, 1427, 1447, 1481, 1487, 1511, 1607, 1663
Offset: 1

Views

Author

Keywords

Comments

The 2nd and 3rd repunit primes, 1111111111111111111 and 11111111111111111111111 are happy primes. - Thomas M. Green, Oct 23 2009
There are 200 terms up to 10^4, 1465 up to 10^5, 11144 up to 10^6, 91323 up to 10^7, 812371 up to 10^8, 7408754 up to 10^9, and 67982202 up to 10^10. These are consistent with b*prime(n) < a(n) < c*prime(n) with constants 0 < b < c. - Charles R Greathouse IV, Jan 06 2016

References

  • R. K. Guy, Unsolved Problems Number Theory, Sect. E34.

Crossrefs

Cf. A007770 (happy numbers), A046519.

Programs

  • Mathematica
    g[n_] := Total[ IntegerDigits[n]^2]; fQ[n_] := NestWhileList[g@# &, n, UnsameQ, All][[-1]] == 1; Select[Prime@ Range@ 300, fQ@# &] (* Robert G. Wilson v, Jan 03 2013 *)
    hpQ[p_]:=NestWhile[Total[IntegerDigits[#]^2]&,p,#!=1&,1,50]==1; Select[Prime[ Range[ 300]],hpQ] (* Harvey P. Dale, Jun 07 2022 *)
  • PARI
    has(n)=while(n>6, n=norml2(digits(n))); n==1
    is(n)=has(n) && isprime(n) \\ Charles R Greathouse IV, Dec 14 2015
    
  • Python
    from sympy import isprime
    def swb(n): return sum(map(lambda x: x*x, map(int, str(n))))
    def happy(bd):
        while bd not in [1, 4]: bd = swb(bd) # iterate to fixed point or cycle
        return bd == 1
    def ok(n): return isprime(n) and happy(n)
    def aupto(n): return [k for k in range(1, n+1) if ok(k)]
    print(aupto(2012)) # Michael S. Branicky, Jul 13 2022

Extensions

More terms from Patrick De Geest, Oct 15 1999

A343192 Happy Honaker primes.

Original entry on oeis.org

263, 1039, 1933, 2221, 3067, 3137, 5741, 6343, 6353, 6971, 7481, 8821, 9103, 10247, 11251, 12347, 13037, 13339, 13457, 13933, 14437, 16451, 17317, 18041, 21617, 26309, 26339, 30091, 30293, 31177, 32009, 34471, 35227, 36307, 36433, 37117, 41131, 41333, 41801, 43781
Offset: 1

Views

Author

K. D. Bajpai, Apr 07 2021

Keywords

Comments

Intersection of A033548 and A035497 or A007770.

Examples

			263 is a Honaker prime: the number of primes up to 263 is 56 and 2 + 6 + 3 = 11 = 5 + 6. 263 is also a Happy number: iterating the sum of squares of digits terminates in 1, i.e., 263 -> 4 + 36 + 9 = 49 -> 16 + 81 = 97 -> 81 + 49 = 130 -> 1 + 9 + 0 = 10 -> 1 + 0 = 1. Thus 263 is a Happy Honaker prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[20000]], FixedPoint[Total[IntegerDigits[#]^2] &, #, 10] == 1 && Plus @@ IntegerDigits@# == Plus @@ IntegerDigits@PrimePi@# &]

A364786 We exclude powers of 10 and numbers of the form 11...111 in which the number of 1's is a power of 10. Then a(n) is the smallest number (not excluded) whose trajectory under iteration of "x -> sum of n-th powers of digits of x" reaches 1.

Original entry on oeis.org

19, 7, 112, 11123, 1111222, 111111245666689, 1111133333333335, 1111122333333333333333333346677777777888, 22222222222222222226666668888888, 233444445555555555555555555555555555555555555555555577, 1222222222233333333333333444444444455555555555555556666666666666666666666677778888889
Offset: 1

Views

Author

Simon R Blow, Aug 07 2023

Keywords

Comments

For n!=2, it appears that the first step in the trajectory is always to a power of 10, so that the task would be to find the shortest and lexicographically smallest partition of a power of 10 into parts 1^n,...,9^n.

Examples

			a(1) = 19 since 1^1 + 9^1 = 10 and 1^1 + 0^1 = 1.
a(3) = 112 since 1^3 + 1^3 + 2^3 = 10 and 1^3 + 0^3 = 1.
		

Crossrefs

Extensions

a(6), a(8), and a(9) corrected by, and a(10) and a(11) from Jon E. Schoenfield, Aug 10 2023
Definition clarified by N. J. A. Sloane, Sep 15 2023
Showing 1-4 of 4 results.