A046691 a(n) = (n^2 + 5*n - 2)/2.
-1, 2, 6, 11, 17, 24, 32, 41, 51, 62, 74, 87, 101, 116, 132, 149, 167, 186, 206, 227, 249, 272, 296, 321, 347, 374, 402, 431, 461, 492, 524, 557, 591, 626, 662, 699, 737, 776, 816, 857, 899, 942, 986, 1031, 1077, 1124, 1172, 1221, 1271, 1322
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Milan Janjic, Two Enumerative Functions
- P. Di Francesco, O. Golinelli and E. Guitter, Meander, folding and arch statistics, arXiv:hep-th/9506030, 1995.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[Binomial(n+3,2) -4: n in [0..50]]; // G. C. Greubel, Jul 31 2022
-
Maple
seq(binomial(n+3, 2)-4, n=0..49); # Zerinvary Lajos, Jan 13 2007
-
Mathematica
Table[(n^2 +5n -2)/2, {n, 0, 50}] (* Bruno Berselli, Dec 17 2014 *)
-
PARI
a(n)=(n^2+5*n-2)/2 \\ Charles R Greathouse IV, Oct 07 2015
-
SageMath
[(n^2 +5*n -2)/2 for n in (0..50)] # G. C. Greubel, Jul 31 2022
Formula
G.f.: (-1 + 5*x - 3*x^2)/(1 - x)^3.
a(n) = a(n-1) + n + 2 with a(0) = -1. - Vincenzo Librandi, Nov 18 2010
a(n) = 3*A000096(n-1) - 2*A000096(n-2), with A000096(-2)=A000096(-1)=-1. - Bruno Berselli, Dec 17 2014
a(n) = 2*A000217(n) - A000217(n-2), with A000217(-2)=1, A000217(-1)=0. - Bruno Berselli, Oct 13 2016
E.g.f.: (1/2)*(x^2 + 6*x - 2)*exp(x). - G. C. Greubel, Jul 13 2017
a(n) + a(n+1) = A028884(n). - R. J. Mathar, Mar 13 2021
a(n) = A000217(n+2) - 4. - G. C. Greubel, Jul 31 2022
Sum_{n>=0} 1/a(n) = 7/12 + 2*Pi*tan(sqrt(33)*Pi/2)/sqrt(33). - Vaclav Kotesovec, Dec 31 2022
Comments