cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A001477 The nonnegative integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 0

Views

Author

Keywords

Comments

Although this is a list, and lists normally have offset 1, it seems better to make an exception in this case. - N. J. A. Sloane, Mar 13 2010
The subsequence 0,1,2,3,4 gives the known values of n such that 2^(2^n)+1 is a prime (see A019434, the Fermat primes). - N. J. A. Sloane, Jun 16 2010
Also: The identity map, defined on the set of nonnegative integers. The restriction to the positive integers yields the sequence A000027. - M. F. Hasler, Nov 20 2013
The number of partitions of 2n into exactly 2 parts. - Colin Barker, Mar 22 2015
The number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 8960 or 168.- Philippe A.J.G. Chevalier, Dec 29 2015
Partial sums give A000217. - Omar E. Pol, Jul 26 2018
First differences are A000012 (the "all 1's" sequence). - M. F. Hasler, May 30 2020
See A061579 for the transposed infinite square matrix, or triangle with rows reversed. - M. F. Hasler, Nov 09 2021
This is the unique sequence (a(n)) that satisfies the inequality a(n+1) > a(a(n)) for all n in N. This simple and surprising result comes from the 6th problem proposed by Bulgaria during the second day of the 19th IMO (1977) in Belgrade (see link and reference). - Bernard Schott, Jan 25 2023

Examples

			Triangular view:
   0
   1   2
   3   4   5
   6   7   8   9
  10  11  12  13  14
  15  16  17  18  19  20
  21  22  23  24  25  26  27
  28  29  30  31  32  33  34  35
  36  37  38  39  40  41  42  43  44
  45  46  47  48  49  50  51  52  53  54
		

References

  • Maurice Protat, Des Olympiades à l'Agrégation, suite vérifiant f(n+1) > f(f(n)), Problème 7, pp. 31-32, Ellipses, Paris 1997.

Crossrefs

Cf. A000027 (n>=1).
Cf. A000012 (first differences).
Partial sums of A057427. - Jeremy Gardiner, Sep 08 2002
Cf. A038608 (alternating signs), A001787 (binomial transform).
Cf. A055112.
Cf. Boustrophedon transforms: A231179, A000737.
Cf. A245422.
Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008586, A008585, A005843, A000217.
When written as an array, the rows/columns are A000217, A000124, A152948, A152950, A145018, A167499, A166136, A167487... and A000096, A034856, A055998, A046691, A052905, A055999... (with appropriate offsets); cf. analogous lists for A000027 in A185787.
Cf. A000290.
Cf. A061579 (transposed matrix / reversed triangle).

Programs

Formula

a(n) = n.
a(0) = 0, a(n) = a(n-1) + 1.
G.f.: x/(1-x)^2.
Multiplicative with a(p^e) = p^e. - David W. Wilson, Aug 01 2001
When seen as array: T(k, n) = n + (k+n)*(k+n+1)/2. Main diagonal is 2*n*(n+1) (A046092), antidiagonal sums are n*(n+1)*(n+2)/2 (A027480). - Ralf Stephan, Oct 17 2004
Dirichlet generating function: zeta(s-1). - Franklin T. Adams-Watters, Sep 11 2005
E.g.f.: x*e^x. - Franklin T. Adams-Watters, Sep 11 2005
a(0)=0, a(1)=1, a(n) = 2*a(n-1) - a(n-2). - Jaume Oliver Lafont, May 07 2008
Alternating partial sums give A001057 = A000217 - 2*(A008794). - Eric Desbiaux, Oct 28 2008
a(n) = 2*A080425(n) + 3*A008611(n-3), n>1. - Eric Desbiaux, Nov 15 2009
a(n) = A007966(n)*A007967(n). - Reinhard Zumkeller, Jun 18 2011
a(n) = Sum_{k>=0} A030308(n,k)*2^k. - Philippe Deléham, Oct 20 2011
a(n) = 2*A028242(n-1) + (-1)^n*A000034(n-1). - R. J. Mathar, Jul 20 2012
a(n+1) = det(C(i+1,j), 1 <= i, j <= n), where C(n,k) are binomial coefficients. - Mircea Merca, Apr 06 2013
a(n-1) = floor(n/e^(1/n)) for n > 0. - Richard R. Forberg, Jun 22 2013
a(n) = A000027(n) for all n>0.
a(n) = floor(cot(1/(n+1))). - Clark Kimberling, Oct 08 2014
a(0)=0, a(n>0) = 2*z(-1)^[( |z|/z + 3 )/2] + ( |z|/z - 1 )/2 for z = A130472(n>0); a 1 to 1 correspondence between integers and naturals. - Adriano Caroli, Mar 29 2015
G.f. as triangle: x*(1 + (x^2 - 5*x + 2)*y + x*(2*x - 1)*y^2)/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Jul 22 2025

A055998 a(n) = n*(n+5)/2.

Original entry on oeis.org

0, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173, 1222, 1272
Offset: 0

Views

Author

Barry E. Williams, Jun 14 2000

Keywords

Comments

If X is an n-set and Y a fixed (n-3)-subset of X then a(n-3) is equal to the number of 2-subsets of X intersecting Y. - Milan Janjic, Aug 15 2007
Bisection of A165157. - Jaroslav Krizek, Sep 05 2009
a(n) is the number of (w,x,y) having all terms in {0,...,n} and w=x+y-1. - Clark Kimberling, Jun 02 2012
Numbers m >= 0 such that 8m+25 is a square. - Bruce J. Nicholson, Jul 26 2017
a(n-1) = 3*(n-1) + (n-1)*(n-2)/2 is the number of connected, loopless, non-oriented, multi-edge vertex-labeled graphs with n edges and 3 vertices. Labeled multigraph analog of A253186. There are 3*(n-1) graphs with the 3 vertices on a chain (3 ways to label the middle graph, n-1 ways to pack edges on one of connections) and binomial(n-1,2) triangular graphs (one way to label the graphs, pack 1 or 2 or ...n-2 on the 1-2 edge, ...). - R. J. Mathar, Aug 10 2017
a(n) is also the number of vertices of the quiver for PGL_{n+1} (see Shen). - Stefano Spezia, Mar 24 2020
Starting from a(2) = 7, this is the 4th column of the array: natural numbers written by antidiagonals downwards. See the illustration by Kival Ngaokrajang and the cross-references. - Andrey Zabolotskiy, Dec 21 2021

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.

Crossrefs

a(n) = A095660(n+1, 2): third column of (1, 3)-Pascal triangle.
Row n=2 of A255961.

Programs

Formula

G.f.: x*(3-2*x)/(1-x)^3.
a(n) = A027379(n), n > 0.
a(n) = A126890(n,2) for n > 1. - Reinhard Zumkeller, Dec 30 2006
a(n) = A000217(n) + A005843(n). - Reinhard Zumkeller, Sep 24 2008
If we define f(n,i,m) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-m-j), then a(n) = -f(n,n-1,3), for n >= 1. - Milan Janjic, Dec 20 2008
a(n) = A167544(n+8). - Philippe Deléham, Nov 25 2009
a(n) = a(n-1) + n + 2 with a(0)=0. - Vincenzo Librandi, Aug 07 2010
a(n) = Sum_{k=1..n} (k+2). - Gary Detlefs, Aug 10 2010
a(n) = A034856(n+1) - 1 = A000217(n+2) - 3. - Jaroslav Krizek, Sep 05 2009
Sum_{n>=1} 1/a(n) = 137/150. - R. J. Mathar, Jul 14 2012
a(n) = 3*n + A000217(n-1) = 3*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = Sum_{i=3..n+2} i. - Wesley Ivan Hurt, Jun 28 2013
a(n) = 3*A000217(n) - 2*A000217(n-1). - Bruno Berselli, Dec 17 2014
a(n) = A046691(n) + 1. Also, a(n) = A052905(n-1) + 2 = A055999(n-1) + 3 for n>0. - Andrey Zabolotskiy, May 18 2016
E.g.f.: x*(6+x)*exp(x)/2. - G. C. Greubel, Apr 05 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/5 - 47/150. - Amiram Eldar, Jan 10 2021
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = -5*cos(sqrt(33)*Pi/2)/(4*Pi).
Product_{n>=1} (1 + 1/a(n)) = 15*cos(sqrt(17)*Pi/2)/(2*Pi). (End)

A014616 a(n) = solution to the postage stamp problem with 2 denominations and n stamps.

Original entry on oeis.org

2, 4, 7, 10, 14, 18, 23, 28, 34, 40, 47, 54, 62, 70, 79, 88, 98, 108, 119, 130, 142, 154, 167, 180, 194, 208, 223, 238, 254, 270, 287, 304, 322, 340, 359, 378, 398, 418, 439, 460, 482, 504, 527, 550, 574, 598, 623, 648, 674, 700, 727, 754, 782, 810, 839, 868
Offset: 1

Views

Author

Keywords

Comments

Fred Lunnon [W. F. Lunnon] defines "solution" to be the smallest value not obtainable by the best set of stamps. The solutions given are one lower than this, that is, the sequence gives the largest number obtainable without a break using the best set of stamps.
a(n-2), for n >= 3, is the number of independent entries of a bisymmetric n X n matrix B_n with B_n[1,1] and B_n[n,n] fixed. Hence a(n-2) = A002620(n+1) - 2. See the Jul 07 2015 comment on A002620. For n=1 and n=2 this matrix B_n is fixed. Bisymmetric matrices B_n, with B_n[1,1] and B_n[n,n] fixed, are, for n >= 3, determined by giving the a(n-2) entries for [1,2], ...., [1,n-1]; [2,2], ..., [2,n-1]; [3,3], ..., [3,n-2]; ..., [ceiling(n/2),n-(ceiling(n/2)-1)]. - Wolfdieter Lang, Aug 16 2015
a(n-1) is the largest possible n-th element in an additive basis of order 2. - Charles R Greathouse IV, May 05 2020

Examples

			Bisymmetric matrix B_5, with B_5[1,1] and B_5[5,5] fixed, have a(3) free entries: for rows 1 and 2: each 3, row 3:  1, altogether 3 + 3 + 1 = 7 = a(5-2). Mark the corresponding matrix entries with x, and obtain a pattern symmetric around the central vertical. - _Wolfdieter Lang_, Aug 16 2015
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section C12, pp. 185-190.

Crossrefs

A row or column of the array A196416 (possibly with 1 subtracted from it).

Programs

Formula

a(n) = floor((n^2 + 6*n + 1)/4).
a(n) = A002620(n+3) - 2 = A024206(n+2) - 1 = (2*n*(n+6)-(-1)^n+1)/8.
G.f.: x*(-2 + x^2)/((1 + x)*(x - 1)^3). - R. J. Mathar, Jul 09 2011
a(n) = floor(A028884(n+1)/4). - Reinhard Zumkeller, Apr 07 2013
a(n)+a(n+1) = A046691(n+1). - R. J. Mathar, Mar 13 2021
a(n) = 2*n + A002620(n-1). - Michael Chu, Apr 28 2022
a(n) = A004116(n) + 1. - Michael Chu, May 02 2022
E.g.f.: (x*(7 + x)*cosh(x) + (1 + 7*x + x^2)*sinh(x))/4. - Stefano Spezia, Nov 09 2022
Sum_{n>=1} 1/a(n) = 67/36 - cot(sqrt(2)*Pi)*Pi/(2*sqrt(2)). - Amiram Eldar, Dec 10 2022

Extensions

Entry improved by comments from John Seldon (johnseldon(AT)onetel.com), Sep 15 2004
More terms from John W. Layman, Apr 13 1999

A185787 Sum of first k numbers in column k of the natural number array A000027; by antidiagonals.

Original entry on oeis.org

1, 7, 25, 62, 125, 221, 357, 540, 777, 1075, 1441, 1882, 2405, 3017, 3725, 4536, 5457, 6495, 7657, 8950, 10381, 11957, 13685, 15572, 17625, 19851, 22257, 24850, 27637, 30625, 33821, 37232, 40865, 44727, 48825, 53166, 57757, 62605, 67717, 73100, 78761, 84707, 90945, 97482, 104325, 111481, 118957, 126760, 134897, 143375
Offset: 1

Views

Author

Clark Kimberling, Feb 03 2011

Keywords

Comments

This is one of many interesting sequences and arrays that stem from the natural number array A000027, of which a northwest corner is as follows:
1....2.....4.....7...11...16...22...29...
3....5.....8....12...17...23...30...38...
6....9....13....18...24...31...39...48...
10...14...19....25...32...40...49...59...
15...20...26....33...41...50...60...71...
21...27...34....42...51...61...72...84...
28...35...43....52...62...73...85...98...
Blocking out all terms below the main diagonal leaves columns whose sums comprise A185787. Deleting the main diagonal and then summing give A185787. Analogous treatments to the left of the main diagonal give A100182 and A101165. Further sequences obtained directly from this array are easily obtained using the following formula for the array: T(n,k)=n+(n+k-2)(n+k-1)/2.
Examples:
row 1: A000124
row 2: A022856
row 3: A016028
row 4: A145018
row 5: A077169
col 1: A000217
col 2: A000096
col 3: A034856
col 4: A055998
col 5: A046691
col 6: A052905
col 7: A055999
diag. (1,5,...) ...... A001844
diag. (2,8,...) ...... A001105
diag. (4,12,...)...... A046092
diag. (7,17,...)...... A056220
diag. (11,23,...) .... A132209
diag. (16,30,...) .... A054000
diag. (22,38,...) .... A090288
diag. (3,9,...) ...... A058331
diag. (6,14,...) ..... A051890
diag. (10,20,...) .... A005893
diag. (15,27,...) .... A097080
diag. (21,35,...) .... A093328
antidiagonal sums: (1,5,15,34,...)=A006003=partial sums of A002817.
Let S(n,k) denote the n-th partial sum of column k. Then
S(n,k)=n*(n^2+3k*n+3*k^2-6*k+5)/6.
S(n,1)=n(n+1)(n+2)/6
S(n,2)=n(n+1)(n+5)/6
S(n,3)=n(n+2)(n+7)/6
S(n,4)=n(n^2+12n+29)/6
S(n,5)=n(n+5)(n+10)/6
S(n,6)=n(n+7)(n+11)/6
S(n,7)=n(n+10)(n+11)/6
Weight array of T: A144112
Accumulation array of T: A185506
Second rectangular sum array of T: A185507
Third rectangular sum array of T: A185508
Fourth rectangular sum array of T: A185509

Crossrefs

Programs

  • Magma
    [n*(7*n^2-6*n+5)/6: n in [1..50]]; // Vincenzo Librandi, Jul 04 2012
  • Mathematica
    f[n_,k_]:=n+(n+k-2)(n+k-1)/2;
    s[k_]:=Sum[f[n,k],{n,1,k}];
    Factor[s[k]]
    Table[s[k],{k,1,70}]  (* A185787 *)
    CoefficientList[Series[(3*x^2+3*x+1)/(1-x)^4,{x,0,50}],x] (* Vincenzo Librandi, Jul 04 2012 *)

Formula

a(n)=n*(7*n^2-6*n+5)/6.
G.f.: x*(3*x^2+3*x+1)/(1-x)^4. - Vincenzo Librandi, Jul 04 2012

Extensions

Edited by Clark Kimberling, Feb 25 2023

A219883 T(n,k)=Number of nXk arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random, but sorted with lexicographically nondecreasing rows and nonincreasing columns, 0..2 nXk array.

Original entry on oeis.org

3, 3, 6, 6, 7, 10, 10, 11, 21, 15, 15, 17, 47, 46, 21, 21, 24, 129, 146, 87, 28, 28, 32, 292, 621, 410, 151, 36, 36, 41, 600, 2190, 2645, 1069, 247, 45, 45, 51, 1158, 6965, 14536, 10350, 2701, 386, 55, 55, 62, 2148, 21035, 74998, 89795, 40239, 6645, 581, 66, 66, 74
Offset: 1

Views

Author

R. H. Hardin Nov 30 2012

Keywords

Comments

Table starts
..3....3......6......10........15........21.........28.........36........45
..6....7.....11......17........24........32.........41.........51........62
.10...21.....47.....129.......292.......600.......1158.......2148......3863
.15...46....146.....621......2190......6965......21035......60891....171009
.21...87....410....2645.....14536.....74998.....371384....1780796...8327951
.28..151...1069...10350.....89795....764027....6337533...51044999.398508546
.36..247...2701...40239....565824...8017398..113313853.1558416287
.45..386...6645..155199...3605746..85092182.2047979807
.55..581..15787..581728..22430565.882578607
.66..847..36047.2085519.132945658
.78.1201..79071.7121374
.91.1662.166909

Examples

			Some solutions for n=3 k=4
..1..1..0..0....2..2..0..0....1..0..0..0....1..0..0..0....0..0..0..0
..1..1..0..1....2..2..0..0....0..0..0..0....1..0..0..0....0..0..0..0
..1..1..0..0....2..2..0..0....0..0..0..2....2..0..2..0....0..2..0..2
		

Crossrefs

Column 1 is A000217(n+1)
Column 2 is A219589
Row 1 is A000217 for n>1
Row 2 is A046691 for n>2

A337484 Number of ordered triples of positive integers summing to n that are neither strictly increasing nor strictly decreasing.

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 8, 13, 17, 22, 28, 35, 41, 50, 58, 67, 77, 88, 98, 111, 123, 136, 150, 165, 179, 196, 212, 229, 247, 266, 284, 305, 325, 346, 368, 391, 413, 438, 462, 487, 513, 540, 566, 595, 623, 652, 682, 713, 743, 776, 808, 841, 875, 910, 944, 981, 1017
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2020

Keywords

Examples

			The a(3) = 1 through a(7) = 13 triples:
  (1,1,1)  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)
           (1,2,1)  (1,2,2)  (1,3,2)  (1,3,3)
           (2,1,1)  (1,3,1)  (1,4,1)  (1,4,2)
                    (2,1,2)  (2,1,3)  (1,5,1)
                    (2,2,1)  (2,2,2)  (2,1,4)
                    (3,1,1)  (2,3,1)  (2,2,3)
                             (3,1,2)  (2,3,2)
                             (4,1,1)  (2,4,1)
                                      (3,1,3)
                                      (3,2,2)
                                      (3,3,1)
                                      (4,1,2)
                                      (5,1,1)
		

Crossrefs

A140106 is the unordered case.
A242771 allows strictly increasing but not strictly decreasing triples.
A337481 counts these compositions of any length.
A001399(n - 6) counts unordered strict triples.
A001523 counts unimodal compositions, with complement A115981.
A007318 and A097805 count compositions by length.
A069905 counts unordered triples.
A218004 counts strictly increasing or weakly decreasing compositions.
A332745 counts partitions with weakly increasing or weakly decreasing run-lengths.
A332835 counts compositions with weakly increasing or weakly decreasing run-lengths.
A337483 counts triples either weakly increasing or weakly decreasing.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],!Less@@#&&!Greater@@#&]],{n,0,15}]

Formula

a(n) = 2*A242771(n - 1) - A000217(n - 1), n > 0.
2*A001399(n - 6) = 2*A069905(n - 3) = 2*A211540(n - 1) is the complement.
4*A001399(n - 6) = 4*A069905(n - 3) = 4*A211540(n - 1) is the strict case.
Conjectures from Colin Barker, Sep 13 2020: (Start)
G.f.: x^3*(1 + 2*x + 2*x^2 - x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n>6.
(End)

A027379 Expansion of (1+x^2-x^3)/(1-x)^3.

Original entry on oeis.org

1, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078
Offset: 0

Views

Author

Keywords

Crossrefs

Essentially the triangular numbers (A000217) minus 3.
Also essentially the same as A055998.

Programs

Formula

a(n) = n*(n+5)/2 = A000217(n+2) - 3 for n>=1. - Emeric Deutsch, Mar 01 2004
a(n) = n + a(n-1) + 2, n>1. - Vincenzo Librandi, Dec 06 2009
E.g.f.: 1 + x*(x + 6)*exp(x)/2. - G. C. Greubel, May 14 2017

A209268 Inverse permutation A054582.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 10, 7, 15, 9, 21, 8, 28, 14, 36, 11, 45, 20, 55, 13, 66, 27, 78, 12, 91, 35, 105, 19, 120, 44, 136, 16, 153, 54, 171, 26, 190, 65, 210, 18, 231, 77, 253, 34, 276, 90, 300, 17, 325, 104, 351, 43, 378, 119, 406, 25, 435, 135, 465, 53, 496, 152
Offset: 1

Views

Author

Boris Putievskiy, Jan 15 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.

Examples

			The start of the sequence for n = 1..32 as table, distributed by exponent of highest power of 2 dividing n:
   |   Exponent of highest power of 2 dividing n
n  |--------------------------------------------------
   |    0      1      2       3      4         5    ...
------------------------------------------------------
1  |....1
2  |...........2
3  |....3
4  |..................4
5  |....6
6  |...........5
7  |...10
8  |..........................7
9  |...15
10 |...........9
11 |...21
12 |..................8
13 |...28
14 |..........14
15 |...36
16 |................................11
17 |...45
18 |..........20
19 |...55
20 |.................13
21 |...66
22 |..........27
23 |...78
24 |................................12
25 |...91
26 |..........35
27 |..105
28 |.................19
29 |..120
30 |..........44
31 |..136
32 |.........................................16
. . .
Let r_c be number row inside the column number c.
r_c = (n+2^c)/2^(c+1).
The column number 0 contains numbers r_0*(r_0+1)/2,     A000217,
The column number 1 contains numbers r_1*(r_1+3)/2,     A000096,
The column number 2 contains numbers r_2*(r_2+5)/2 + 1, A034856,
The column number 3 contains numbers r_3*(r_3+7)/2 + 3, A055998,
The column number 4 contains numbers r_4*(r_4+9)/2 + 6, A046691.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (v = IntegerExponent[n, 2]; (1/2)*(((1/2)*(n/2^v + 1) + v)^2 + (1/2)*(n/2^v + 1) - v)); Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Jan 15 2013, from 1st formula *)
  • Python
    f = open("result.csv", "w")
    def A007814(n):
    ### author        Richard J. Mathar 2010-09-06 (Start)
    ### http://oeis.org/wiki/User:R._J._Mathar/oeisPy/oeisPy/oeis_bulk.py
            a = 0
            nshft = n
            while (nshft %2 == 0):
                    a += 1
                    nshft >>= 1
            return a
    ###(End)
    for  n in range(1,10001):
         x = A007814(n)
         y = (n+2**x)/2**(x+1)
         m = ((x+y)**2-x+y)/2
         f.write('%d;%d;%d;%d;\n' % (n, x, y, m))
    f.close()

Formula

a(n) = (((A003602)+A007814(n))^2 - A007814(n) + A003602(n))/2.
a(n) = ((x+y)^2-x+y)/2, where x = max {k: 2^k | n}, y = (n+2^x)/2^(x+1).

A046726 Triangle of numbers of semi-meanders of order n with k components.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 4, 1, 4, 11, 16, 10, 1, 5, 17, 37, 48, 24, 1, 6, 24, 66, 126, 140, 66, 1, 7, 32, 104, 254, 430, 428, 174, 1, 8, 41, 152, 438, 956, 1454, 1308, 504, 1, 9, 51, 211, 690, 1796, 3584, 4976, 4072, 1406, 1, 10, 62, 282, 1023, 3028, 7238, 13256, 16880, 12796, 4210
Offset: 1

Views

Author

Keywords

Comments

Rows are in order of decreasing number of components. Diagonals give number of semi-meanders with k components. - Andrew Howroyd, Nov 27 2015

Examples

			Triangle starts:
  1;
  1, 1;
  1, 2,  2;
  1, 3,  6,   4;
  1, 4, 11,  16,  10;
  1, 5, 17,  37,  48,  24;
  1, 6, 24,  66, 126, 140,   66;
  1, 7, 32, 104, 254, 430,  428,  174;
  1, 8, 41, 152, 438, 956, 1454, 1308, 504;
  ...
		

Crossrefs

Diagonals include A000682, A046721, A046722, A046723, A046724, A046725. Columns include A000027, A046691. Row sums are in A000108 (Catalan numbers).

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 05 2000
T(12,k)-T(40,k) from Andrew Howroyd, Dec 07 2015

A371912 Maximum Zagreb index of maximal 3-degenerate graphs with n vertices.

Original entry on oeis.org

12, 36, 66, 102, 144, 192, 246, 306, 372, 444, 522, 606, 696, 792, 894, 1002, 1116, 1236, 1362, 1494, 1632, 1776, 1926, 2082, 2244, 2412, 2586, 2766, 2952, 3144, 3342, 3546, 3756, 3972, 4194, 4422, 4656, 4896, 5142, 5394, 5652, 5916, 6186, 6462, 6744, 7032, 7326, 7626, 7932
Offset: 3

Views

Author

Allan Bickle, Apr 11 2024

Keywords

Comments

The Zagreb index of a graph is the sum of the squares of the degrees over all vertices of the graph.
A maximal 3-degenerate graph can be constructed from a 3-clique by iteratively adding a new 3-leaf (vertex of degree 3) adjacent to three existing vertices. The extremal graphs are 3-stars, so the bound also applies to 3-trees.

Examples

			The graph K_3 has 3 degree 2 vertices, so a(3) = 3*4 = 12.
		

Crossrefs

Cf. A002378, A152811, A371912 (Zagreb indices of maximal k-degenerate graphs).

Programs

  • Mathematica
    Array[3*(#^2 + # - 8) &, 50, 3] (* Paolo Xausa, Jun 09 2024 *)

Formula

a(n) = 3*(n-1)^2 + 9*(n-3).
a(n) = 6*A046691(n-2) for n>2.
a(n) = 6*A060577(n-1) for n>3.
G.f.: 6*x^3*(2 - x^2)/(1 - x)^3. - Stefano Spezia, Apr 12 2024
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 5. - Chai Wah Wu, Apr 16 2024
Sum_{n>=3} 1/a(n) = 19/72 + Pi*tan(Pi*sqrt(33)/2)*sqrt(33)/99 = 0.1865497.... - R. J. Mathar, Apr 22 2024
Showing 1-10 of 16 results. Next