cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046727 Related to Pythagorean triples: alternate terms of A001652 and A046090.

Original entry on oeis.org

0, 3, 21, 119, 697, 4059, 23661, 137903, 803761, 4684659, 27304197, 159140519, 927538921, 5406093003, 31509019101, 183648021599, 1070379110497, 6238626641379, 36361380737781, 211929657785303, 1235216565974041, 7199369738058939, 41961001862379597, 244566641436218639
Offset: 0

Views

Author

Keywords

Comments

For a triple (a,b,c) there exist k,m such that (a,b,c) = (k^2 - m^2, 2*k*m, k^2 + m^2). Here k = A001333(n) and m = A001333(n+1), so this sequence is identical to the Pell oblongs A084159 for n > 0. - Lambert Klasen (Lambert.Klasen(AT)gmx.de), Nov 10 2004
a(n), for n >= 1, gives the odd length (in some unit) catheti (legs) of the (primitive) Pythagorean triples which have absolute length difference of the catheti equal to one. See a W. Lang comment on A001653 on how to generate all such Pythagorean triples. - Wolfdieter Lang, Mar 08 2012

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.

Crossrefs

Essentially the same as A084159.

Programs

  • Haskell
    a046727 n = a046727_list !! n
    a046727_list = 0 : f (tail a001652_list) (tail a046090_list) where
       f (x::xs) (:y:ys) = x : y : f xs ys
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    I:=[0,3,21,119]; [n le 4 select I[n] else 5*Self(n-1)+5*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Nov 04 2016
    
  • Mathematica
    RecurrenceTable[{a[n+2]==6a[n+1] -a[n] -4*(-1)^n, a[0]==3, a[1]==21}, a, {n, 30}] (* Ron Knott, Jul 01 2013 *)
    LinearRecurrence[{5,5,-1}, {0,3,21,119}, 30] (* Vincenzo Librandi, Nov 04 2016 *)
  • PARI
    concat(0, Vec(x*(3+6*x-x^2)/((1+x)*(1-6*x+x^2)) + O(x^30))) \\ Colin Barker, Nov 03 2016
    
  • SageMath
    [(lucas_number2(2*n+1,2,-1) +2*(-1)^n)/4 -int(n==0) for n in range(41)] # G. C. Greubel, Feb 11 2023

Formula

Values of x obtained by repeatedly multiplying the triple (x, y, z) = (3, 4, 5) by the matrix A = ([1 2 2], [2 1 2], [2 2 3]), the Across matrix of "The Trinary Tree(s) underlying Primitive Pythagorean Triples" generating matrices. - Vim Wenders, Jan 14 2004
For n > 0, a(n) = A001333(n)*A001333(n+1). - Lambert Klasen (Lambert.Klasen(AT)gmx.de), Nov 10 2004
G.f.: x*(3+6*x-x^2)/((1+x)*(1-6*x+x^2)). - R. J. Mathar, Jul 08 2009
a(n) + a(n+1) = A005319(n+1), n > 0. - R. J. Mathar, Jul 13 2009
a(n) = 6*a(n-1) - a(n-2) - 4*(-1)^n. - Ron Knott, Jul 01 2013
From Colin Barker, Nov 03 2016: (Start)
a(n) = (2*(-1)^n + (1+sqrt(2))^(2*n+1) + (1-sqrt(2))^(2*n+1))/4 for n > 0.
a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3) for n > 3. (End)
From G. C. Greubel, Feb 11 2023: (Start)
a(n) = (1/2)*(A001109(n+1) + A001109(n) + (-1)^n) - [n=0].
a(n) = (A001333(2*n+1) + (-1)^n)/2 - [n=0]. (End)
E.g.f.: exp(-x)*(1 + exp(4*x)*(cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x)))/2 - 1. - Stefano Spezia, Aug 03 2024

Extensions

More terms from Sascha Kurz, Jan 23 2003