cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A195500 Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(2).

Original entry on oeis.org

3, 228, 308, 5289, 543900, 706180, 1244791, 51146940, 76205040, 114835995824, 106293119818725, 222582887719576, 3520995103197240, 17847666535865852, 18611596834765355, 106620725307595884, 269840171418387336, 357849299891217865
Offset: 1

Views

Author

Clark Kimberling, Sep 20 2011

Keywords

Comments

For each positive real number r, there is a sequence (a(n),b(n),c(n)) of primitive Pythagorean triples such that the limit of b(n)/a(n) is r and
|r-b(n+1)/a(n+1)| < |r-b(n)/a(n)|. Peter Shiu showed how to find (a(n),b(n)) from the continued fraction for r, and Peter J. C. Moses incorporated Shiu's method in the Mathematica program shown below.
Examples:
r...........a(n)..........b(n)..........c(n)
sqrt(2).....A195500.......A195501.......A195502
sqrt(3).....A195499.......A195503.......A195531
sqrt(5).....A195532.......A195533.......A195534
sqrt(6).....A195535.......A195536.......A195537
sqrt(8).....A195538.......A195539.......A195540
sqrt(12)....A195680.......A195681.......A195682
e...........A195541.......A195542.......A195543
pi..........A195544.......A195545.......A195546
tau.........A195687.......A195688.......A195689
1...........A046727.......A084159.......A001653
2...........A195614.......A195615.......A007805
3...........A195616.......A195617.......A097315
4...........A195619.......A195620.......A078988
5...........A195622.......A195623.......A097727
1/2.........A195547.......A195548.......A195549
3/2.........A195550.......A195551.......A195552
5/2.........A195553.......A195554.......A195555
1/3.........A195556.......A195557.......A195558
2/3.........A195559.......A195560.......A195561
1/4.........A195562.......A195563.......A195564
5/4.........A195565.......A195566.......A195567
7/4.........A195568.......A195569.......A195570
1/5.........A195571.......A195572.......A195573
2/5.........A195574.......A195575.......A195576
3/5.........A195577.......A195578.......A195579
4/5.........A195580.......A195611.......A195612
sqrt(1/2)...A195625.......A195626.......A195627
sqrt(1/3)...{1}+A195503...{0}+A195499...{1}+A195531
sqrt(2/3)...A195631.......A195632.......A195633
sqrt(3/4)...A195634.......A195635.......A195636

Examples

			For r=sqrt(2), the first five fractions b(n)/a(n) can be read from the following five primitive Pythagorean triples (a(n), b(n), c(n)) = (A195500, A195501, A195502):
(3,4,5); |r - b(1)/a(1)| = 0.08...
(228,325,397); |r - b(2)/a(2)| = 0.011...
(308,435,533); |r - b(3)/a(3)| = 0.0018...
(5289,7480,9161); |r - b(4)/a(4)| = 0.000042...
(543900,769189,942061); |r - b(5)/a(5)| = 0.0000003...
		

Crossrefs

Programs

  • Maple
    Shiu := proc(r,n)
            t := r+sqrt(1+r^2) ;
            cf := numtheory[cfrac](t,n+1) ;
            mn := numtheory[nthconver](cf,n) ;
            (mn-1/mn)/2 ;
    end proc:
    A195500 := proc(n)
            Shiu(sqrt(2),n) ;
            denom(%) ;
    end proc: # R. J. Mathar, Sep 21 2011
  • Mathematica
    r = Sqrt[2]; z = 18;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195500, A195501 *)
    Sqrt[a^2 + b^2] (* A195502 *)

A046729 Expansion of 4*x/((1+x)*(1-6*x+x^2)).

Original entry on oeis.org

0, 4, 20, 120, 696, 4060, 23660, 137904, 803760, 4684660, 27304196, 159140520, 927538920, 5406093004, 31509019100, 183648021600, 1070379110496, 6238626641380, 36361380737780, 211929657785304, 1235216565974040, 7199369738058940, 41961001862379596, 244566641436218640
Offset: 0

Views

Author

Keywords

Comments

Related to Pythagorean triples: alternate terms of A001652 and A046090.
Even-valued legs of nearly isosceles right triangles: legs differ by 1. 0 is smaller leg of degenerate triangle with legs 0 and 1 and hypotenuse 1. - Charlie Marion, Nov 11 2003
The complete (nearly isosceles) primitive Pythagorean triple is given by {a(n), a(n)+(-1)^n, A001653(n)}. - Lekraj Beedassy, Feb 19 2004
Note also that A046092 is the even leg of this other class of nearly isosceles Pythagorean triangles {A005408(n), A046092(n), A001844(n)}, i.e., {2n+1, 2n(n+1), 2n(n+1)+1} where longer sides (viz. even leg and hypotenuse) are consecutive. - Lekraj Beedassy, Apr 22 2004
Union of even terms of A001652 and A046090. Sum of legs of primitive Pythagorean triangles is A002315(n) = 2*a(n) + (-1)^n. - Lekraj Beedassy, Apr 30 2004

Examples

			[1,0,1]*[1,2,2; 2,1,2; 2,2,3]^0 gives (degenerate) primitive Pythagorean triple [1, 0, 1], so a(0) = 0. [1,0,1]*[1,2,2; 2,1,2; 2,2,3]^7 gives primitive Pythagorean triple [137903, 137904, 195025] so a(7) = 137904.
G.f. = 4*x + 20*x^2 + 120*x^3 + 696*x^4 + 4060*x^5 + 23660*x^6 + ...
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
  • W. Sierpiński, Pythagorean triangles, Dover Publications, Inc., Mineola, NY, 2003, p. 17. MR2002669.

Crossrefs

Programs

  • Magma
    [4*Floor(((Sqrt(2)+1)^(2*n+1)-(Sqrt(2)-1)^(2*n+1)-2*(-1)^n) / 16): n in [0..30]]; // Vincenzo Librandi, Jul 29 2019
    
  • Mathematica
    LinearRecurrence[{5,5,-1}, {0,4,20}, 25] (* Vincenzo Librandi, Jul 29 2019 *)
  • PARI
    a(n)=n%2+(real((1+quadgen(8))^(2*n+1))-1)/2
    
  • PARI
    a(n)=if(n<0,-a(-1-n),polcoeff(4*x/(1+x)/(1-6*x+x^2)+x*O(x^n),n))
    
  • SageMath
    [(lucas_number2(2*n+1,2,-1) -2*(-1)^n)/4 for n in range(41)] # G. C. Greubel, Feb 11 2023

Formula

a(n) = ((1+sqrt(2))^(2n+1) + (1-sqrt(2))^(2n+1) + 2*(-1)^(n+1))/4.
a(n) = A089499(n)*A089499(n+1).
a(n) = 4*A084158(n). - Lekraj Beedassy, Jul 16 2004
a(n) = ceiling((sqrt(2)+1)^(2*n+1) - (sqrt(2)-1)^(2*n+1) - 2*(-1)^n)/4. - Lambert Klasen (Lambert.Klasen(AT)gmx.net), Nov 12 2004
a(n) is the k-th entry among the complete near-isosceles primitive Pythagorean triple A114336(n), where k = (3*(2n-1) - (-1)^n)/2, i.e., a(n) = A114336(A047235(n)), for positive n. - Lekraj Beedassy, Jun 04 2006
a(n) = A046727(n) - (-1)^n = 2*A114620(n). - Lekraj Beedassy, Aug 14 2006
From George F. Johnson, Aug 29 2012: (Start)
2*a(n)*(a(n) + (-1)^n) + 1 = (A000129(2*n+1))^2;
n > 0, 2*a(n)*(a(n) + (-1)^n) + 1 = ((a(n+1) - a(n-1))/4)^2, a perfect square.
a(n+1) = (3*a(n) + 2*(-1)^n) + 2*sqrt(2*a(n)*(a(n) + (-1)^n)+ 1).
a(n-1) = (3*a(n) + 2*(-1)^n) - 2*sqrt(2*a(n)*(a(n) + (-1)^n)+ 1).
a(n+1) = 6*a(n) - a(n-1) + 4*(-1)^n.
a(n+1) = 5*a(n) + 5*a(n-1) - a(n-2).
a(n+1) *a(n-1) = a(n)*(a(n) + 4*(-1)^n).
a(n) = (sqrt(1 + 8*A029549(n)) - (-1)^n)/2.
a(n) = A002315(n) - A084159(n) = A084159(n) - (-1)^n.
a(n) = A001652(n) + (1 - (-1)^n)/2 = A046090(n) - (1 + (-1)^n)/2.
Limit_{n->oo} a(n)/a(n-1) = 3 + 2*sqrt(2).
Limit_{n->oo} a(n)/a(n-2) = 17 + 12*sqrt(2).
Limit_{n->oo} a(n)/a(n-r) = (3 + 2*sqrt(2))^r.
Limit_{n->oo} a(n-r)/a(n) = (3 - 2*sqrt(2))^r. (End)
From G. C. Greubel, Feb 11 2023: (Start)
a(n) = (A001333(2*n+1) - 2*(-1)^n)/4.
a(n) = (1/2)*(A001109(n+1) + A001109(n) - (-1)^n). (End)
E.g.f.: exp(-x)*(exp(4*x)*(cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x)) - 1)/2. - Stefano Spezia, Aug 03 2024

A084159 Pell oblongs.

Original entry on oeis.org

1, 3, 21, 119, 697, 4059, 23661, 137903, 803761, 4684659, 27304197, 159140519, 927538921, 5406093003, 31509019101, 183648021599, 1070379110497, 6238626641379, 36361380737781, 211929657785303, 1235216565974041, 7199369738058939, 41961001862379597, 244566641436218639
Offset: 0

Views

Author

Paul Barry, May 18 2003

Keywords

Comments

Essentially the same as A046727.

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 60 at p. 123.

Crossrefs

Cf. A046727 (same sequence except for first term).

Programs

  • Magma
    [Floor(((Sqrt(2)+1)^(2*n+1)-(Sqrt(2)-1)^(2*n+1)+2*(-1)^n)/4): n in [0..30]]; // Vincenzo Librandi, Aug 13 2011
    
  • Mathematica
    b[n_]:= Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[2], n]]];
    Join[{1}, Table[b[n+1], {n,50}]*Table[b[n], {n,50}]] (* Vladimir Joseph Stephan Orlovsky, Jan 15 2011 *)
    LinearRecurrence[{5,5,-1},{1,3,21},30] (* Harvey P. Dale, Aug 04 2019 *)
  • SageMath
    [(lucas_number2(2*n+1, 2, -1) + 2*(-1)^n)/4 for n in range(31)] # G. C. Greubel, Oct 11 2022

Formula

a(n) = ((sqrt(2)+1)^(2*n+1) - (sqrt(2)-1)^(2*n+1) + 2*(-1)^n)/4.
a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3). - Paul Curtz, May 17 2008
G.f.: (1-x)^2/((1+x)*(1-6*x+x^2)). - R. J. Mathar, Sep 17 2008
a(n) = A078057(n)*A001333(n). - R. J. Mathar, Jul 08 2009
a(n) = A001333(n)*A001333(n+1).
From Peter Bala, May 01 2012: (Start)
a(n) = (-1)^n*R(n,-4), where R(n,x) is the n-th row polynomial of A211955.
a(n) = (-1)^n*1/u*T(n,u)*T(n+1,u) with u = sqrt(-1) and T(n,x) the Chebyshev polynomial of the first kind.
a(n) = (-1)^n + 4*Sum_{k = 1..n} (-1)^(n-k)*8^(k-1)*binomial(n+k,2*k).
Recurrence equations: a(n) = 6*a(n-1) - a(n-2) + 4*(-1)^n, with a(0) = 1 and a(1) = 3; a(n)*a(n-2) = a(n-1)*(a(n-1)+4*(-1)^n).
Sum_{k >= 0} (-1)^k/a(k) = 1/sqrt(2).
1 - 2*(Sum_{k = 0..n} (-1)^k/a(k))^2 = (-1)^(n+1)/A090390(n+1). (End)
a(n) = (A001333(2*n+1) + (-1)^n)/2. - G. C. Greubel, Oct 11 2022
E.g.f.: exp(-x)*(1 + exp(4*x)*(cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x)))/2. - Stefano Spezia, Aug 03 2024

A321768 Consider the ternary tree of triples P(n, k) with n > 0 and 0 < k <= 3^(n-1), such that P(1, 1) = [3; 4; 5] and each triple t on some row branches to the triples A*t, B*t, C*t on the next row (with A = [1, -2, 2; 2, -1, 2; 2, -2, 3], B = [1, 2, 2; 2, 1, 2; 2, 2, 3] and C = [-1, 2, 2; -2, 1, 2; -2, 2, 3]); T(n, k) is the first component of P(n, k).

Original entry on oeis.org

3, 5, 21, 15, 7, 55, 45, 39, 119, 77, 33, 65, 35, 9, 105, 91, 105, 297, 187, 95, 207, 117, 57, 377, 299, 217, 697, 459, 175, 319, 165, 51, 275, 209, 115, 403, 273, 85, 133, 63, 11, 171, 153, 203, 555, 345, 189, 429, 247, 155, 987, 777, 539, 1755, 1161, 429
Offset: 1

Views

Author

Rémy Sigrist, Nov 18 2018

Keywords

Comments

The tree P runs uniquely through every primitive Pythagorean triple.
The ternary tree is built as follows:
- for any n and k such that n > 0 and 0 < k <= 3^(n-1):
- P(n, k) is a column vector,
- P(n+1, 3*k-2) = A * P(n, k),
- P(n+1, 3*k-1) = B * P(n, k),
- P(n+1, 3*k) = C * P(n, k).
All terms are odd.
Every primitive Pythagorean triple (a, b, c) can be characterized by a pair of parameters (i, j) such that:
- i > j > 0 and gcd(i, j) = 1 and i and j are of opposite parity,
- a = i^2 - j^2,
- b = 2 * i * j,
- c = i^2 + j^2,
- A321782(n, k) and A321783(n, k) respectively give the value of i and of j pertaining to (A321768(n, k), A321769(n, k), A321770(n, k)).
Every primitive Pythagorean triple (a, b, c) can also be characterized by a pair of parameters (u, v) such that:
- u > v > 0 and gcd(u, v) = 1 and u and v are odd,
- a = u * v,
- b = (u^2 - v^2) / 2,
- c = (u^2 + v^2) / 2,
- A321784(n, k) and A321785(n, k) respectively give the value of u and of v pertaining to (A321768(n, k), A321769(n, k), A321770(n, k)).

Examples

			The first rows are:
   3
   5, 21, 15
   7, 55, 45, 39, 119, 77, 33, 65, 35
		

Crossrefs

See A321769 and A321770 for the other components.
See A322170 for the corresponding areas.
See A322181 for the corresponding perimeters.
Cf. A046727.

Programs

  • PARI
    M = [[1, -2, 2; 2, -1, 2; 2, -2, 3], [1, 2, 2; 2, 1, 2; 2, 2, 3], [-1, 2, 2; -2, 1, 2; -2, 2, 3]];
    T(n,k) = my (t=[3;4;5], d=digits(3^(n-1)+k-1, 3)); for (i=2, #d, t = M[d[i]+1] * t); return (t[1,1])

Formula

Empirically:
- T(n, 1) = 2*n + 1,
- T(n, (3^(n-1) + 1)/2) = A046727(n),
- T(n, 3^(n-1)) = 4*n^2 - 1.
Showing 1-4 of 4 results.