A047099 a(n) = A047098(n)/2.
1, 4, 19, 98, 531, 2974, 17060, 99658, 590563, 3540464, 21430267, 130771376, 803538100, 4967127736, 30866224824, 192696614730, 1207967820099, 7600482116932, 47981452358201, 303820299643138, 1929099000980219, 12279621792772822, 78346444891033856
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..400
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- J.-P. Bultel and S. Giraudo, Combinatorial Hopf algebras from PROs, arXiv preprint arXiv:1406.6903 [math.CO], 2014-2016.
- Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Noga Alon and Noah Kravitz, Counting Dope Matrices, arXiv:2205.09302 [math.CO], 2022.
Programs
-
Maple
f := n -> binomial(3*n, n) - (1/2)*add(binomial(3*n, k), k=0..n): seq(f(n), n=1..20);
-
Mathematica
Table[Binomial[3 n, n] - Sum[Binomial[3 n, k], {k, 0, n}]/2, {n, 20}] (* Wesley Ivan Hurt, Jun 13 2014 *)
-
PARI
{a(n)=local(A=1+x); A=x*exp(sum(m=1, n+1, sum(j=0, m, binomial(3*m, j))*x^m/m +x*O(x^n))); polcoeff(A, n)} \\ Paul D. Hanna, Sep 04 2012
Formula
a(n) = binomial(3*n, n) - (1/2)*Sum_{k=0..n} binomial(3*n, k). - Vladeta Jovovic, Mar 22 2003
a(n) = A047098(n)/2. - Benoit Cloitre, Jan 28 2004
From Gary W. Adamson, Jul 28 2011: (Start)
a(n) is the upper left term in M^n, where M is the infinite square production matrix as follows:
1, 1, 0, 0, 0, 0, ...
3, 3, 1, 0, 0, 0, ...
3, 3, 3, 1, 0, 0, ...
1, 1, 3, 3, 1, 0, ...
0, 0, 1, 3, 3, 0, ...
0, 0, 0, 1, 3, 0, ...
... (End)
G.f.: x*exp( Sum_{n>=1} A066380*x^n/n ) where A066380(n) = Sum_{k=0..n} binomial(3*n,k). - Paul D. Hanna, Sep 04 2012
G.f.: (F(x)-1)/(2-F(x)), where F(x) is g.f. of A001764. - Vladimir Kruchinin, Jun 13 2014.
a(n) = (1/n)*Sum_{k=1..n} k*C(3*n,n-k). - Vladimir Kruchinin, Oct 03 2022
From Paul D. Hanna, Jun 06 2025: (Start)
G.f. A(x) = Series_Reversion( x*(1 + x)^2 / (1 + 2*x)^3 ).
G.f. satisfies A(x) = x*(1 + 2*A(x))^3 / (1 + A(x))^2.
G.f. satisfies A'(x) = A(x) * (1 + A(x)) * (1 + 2*A(x)) / (x*(1 - A(x))).
(End)
Extensions
Comment revised by Clark Kimberling, Dec 08 2006
Edited by N. J. A. Sloane, Dec 21 2006
Comments