A047218 Numbers that are congruent to {0, 3} mod 5.
0, 3, 5, 8, 10, 13, 15, 18, 20, 23, 25, 28, 30, 33, 35, 38, 40, 43, 45, 48, 50, 53, 55, 58, 60, 63, 65, 68, 70, 73, 75, 78, 80, 83, 85, 88, 90, 93, 95, 98, 100, 103, 105, 108, 110, 113, 115, 118, 120, 123, 125, 128, 130, 133, 135, 138, 140, 143, 145, 148
Offset: 1
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..10001
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Maple
seq(floor(5*k/2)-2, k=1..100); # Wesley Ivan Hurt, Sep 27 2013
-
Mathematica
Select[Range[0, 200], MemberQ[{0, 3}, Mod[#, 5]] &] (* Vladimir Joseph Stephan Orlovsky, Feb 12 2012 *) Table[Floor[5 n/2] - 2, {n,100}] (* Wesley Ivan Hurt, Sep 27 2013 *) With[{c5=5*Range[0,30]},Riffle[c5,c5+3]] (* or *) LinearRecurrence[{1,1,-1},{0,3,5},60] (* Harvey P. Dale, Apr 02 2017 *)
-
PARI
forstep(n=0,200,[3,2],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
Formula
a(n) = 2*n - 5 + ceiling(n/2). - Jesus De Loera (deloera(AT)math.ucdavis.edu)
a(n) = 5*n - a(n-1) - 7 for n>1, a(1)=0. - Vincenzo Librandi, Aug 05 2010
From Bruno Berselli, Jun 28 2011: (Start)
G.f.: (2*x + 3)*x^2/((x + 1)*(x - 1)^2).
a(n) = (10*n + (-1)^n - 9)/4.
a(n) = a(n-1) + a(n-2) - a(n-3). (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=3 and b(k)=A020714(k-1)=5*2^(k-1) for k>0. - Philippe Deléham, Oct 17 2011
a(n) = n + ceiling(3*(n-1)/2) - 1. - Arkadiusz Wesolowski, Sep 18 2012
a(n) = floor(5*n/2)-2 = 3*n - 3 - floor((n-1)/2). - Wesley Ivan Hurt, Oct 14 2013
a(n+1) = n + (n + (n + (n mod 2))/2). - Wesley Ivan Hurt, Oct 19 2013
Sum_{n>=2} (-1)^n/a(n) = log(5)/4 - sqrt(5)*log(phi)/10 - sqrt(1-2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 07 2021
E.g.f.: 2 + ((5*x - 9/2)*exp(x) + (1/2)*exp(-x))/2. - David Lovler, Aug 22 2022
Comments