A047220 Numbers that are congruent to {0, 1, 3} mod 5.
0, 1, 3, 5, 6, 8, 10, 11, 13, 15, 16, 18, 20, 21, 23, 25, 26, 28, 30, 31, 33, 35, 36, 38, 40, 41, 43, 45, 46, 48, 50, 51, 53, 55, 56, 58, 60, 61, 63, 65, 66, 68, 70, 71, 73, 75, 76, 78, 80, 81, 83, 85, 86, 88, 90, 91, 93, 95, 96, 98, 100, 101, 103, 105, 106
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Allan Bickle, Nordhaus-Gaddum Theorems for k-Decompositions, Congr. Num. 211 (2012) 171-183.
- Z. Füredi, A. Kostochka, M. Stiebitz, R. Skrekovski, and D. West, Nordhaus-Gaddum-type theorems for decompositions into many parts, J. Graph Theory 50 (2005), 273-292.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
I:=[0, 1, 3, 5]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, Apr 26 2012
-
Maple
seq(floor(5*(n-1)/3), n=1..56); # Gary Detlefs, Feb 20 2010 seq(2*n-floor(n/3)-(n^2 mod 3), n=0..55); # Gary Detlefs, Mar 19 2010
-
Mathematica
Table[Floor[5*(n-1)/3], {n,100}] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)
-
PARI
a(n)=n + 2*(n-1)\3 - 1 \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = floor(5*(n-1)/3). - Gary Detlefs, Feb 20 2010
a(n) = 2*n - floor(n/3) - (n^2 mod 3), with offset 0. - Gary Detlefs, Mar 19 2010
G.f.: x^2*(1 + 2*x + 2*x^2)/(1 - x)^2/(1 + x + x^2). - Colin Barker, Feb 17 2012
a(n) = n + floor(2*(n-1)/3) - 1. - Arkadiusz Wesolowski, Sep 18 2012
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 5*n/3 - 2 + 2*sin(2*n*Pi/3)/(3*sqrt(3)).
a(3*k) = 5*k-2, a(3*k-1) = 5*k-4, a(3*k-2) = 5*k-5. (End)
E.g.f.: 2 + (5*x - 6)*exp(x)/3 + 2*sin(sqrt(3)*x/2)*(cosh(x/2) - sinh(x/2))/(3*sqrt(3)). - Ilya Gutkovskiy, Jun 14 2016
Sum_{n>=2} (-1)^n/a(n) = sqrt(1-2/sqrt(5))*Pi/5 + 2*log(phi)/sqrt(5) + log(2)/5, where phi is the golden ratio (A001622). - Amiram Eldar, Apr 16 2023
Comments