A047244 Numbers that are congruent to {0, 2, 3} mod 6.
0, 2, 3, 6, 8, 9, 12, 14, 15, 18, 20, 21, 24, 26, 27, 30, 32, 33, 36, 38, 39, 42, 44, 45, 48, 50, 51, 54, 56, 57, 60, 62, 63, 66, 68, 69, 72, 74, 75, 78, 80, 81, 84, 86, 87, 90, 92, 93, 96, 98, 99, 102, 104, 105, 108, 110, 111, 114, 116, 117, 120, 122, 123
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[n : n in [0..130] | n mod 6 in [0, 2, 3]]; // Vincenzo Librandi, Oct 02 2015
-
Maple
A047244:=n->(6*n-7-2*cos(2*n*Pi/3))/3: seq(A047244(n), n=1..100); # Wesley Ivan Hurt, Jun 13 2016
-
Mathematica
Select[Range[0, 200], Mod[#, 6] == 0 || Mod[#, 6] == 2 || Mod[#, 6] == 3 &] (* Vladimir Joseph Stephan Orlovsky, Jul 07 2011 *) Select[Range[0, 200], MemberQ[{0, 2, 3}, Mod[#, 6]] &] (* Vincenzo Librandi, Oct 02 2015 *) LinearRecurrence[{1, 0, 1, -1}, {2, 3, 6, 8}, {0, 20}] (* Eric W. Weisstein, Apr 09 2018 *) CoefficientList[Series[x (2 + x + 3 x^2)/((-1 + x)^2 (1 + x + x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 09 2018 *) Table[(6 n + Cos[2 n Pi/3] + Sqrt[3] Sin[2 n Pi/3] - 1)/3, {n, 0, 20}] (* Eric W. Weisstein, Apr 09 2018 *)
-
PARI
isok(n) = my(m = n % 6); (m==0) || (m==2) || (m==3); \\ Michel Marcus, Oct 02 2015
Formula
G.f.: x^2*(2+x+3*x^2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (6*n-7-2*cos(2*n*Pi/3))/3.
a(3k) = 6k-3, a(3k-1) = 6k-4, a(3k-2) = 6k-6. (End)
E.g.f.: (9 + (6*x - 7)*exp(x) - 2*cos(sqrt(3)*x/2)*(cosh(x/2) - sinh(x/2)))/3. - Ilya Gutkovskiy, Jun 14 2016
Sum_{n>=2} (-1)^n/a(n) = (3-sqrt(3))*Pi/18 + log(2+sqrt(3))/(2*sqrt(3)) + log(2)/3. - Amiram Eldar, Dec 14 2021