A047245 Numbers that are congruent to {1, 2, 3} mod 6.
1, 2, 3, 7, 8, 9, 13, 14, 15, 19, 20, 21, 25, 26, 27, 31, 32, 33, 37, 38, 39, 43, 44, 45, 49, 50, 51, 55, 56, 57, 61, 62, 63, 67, 68, 69, 73, 74, 75, 79, 80, 81, 85, 86, 87, 91, 92, 93, 97, 98, 99, 103, 104, 105, 109, 110, 111, 115, 116, 117, 121, 122, 123
Offset: 1
Links
- David Lovler, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Magma
[2*n-3+((2*n-3) mod 3) : n in [1..100]]; // Wesley Ivan Hurt, Apr 13 2015
-
Maple
A047245:=n->2*n-3+((2*n-3) mod 3): seq(A047245(n), n=1..100); # Wesley Ivan Hurt, Apr 13 2015
-
Mathematica
Select[Range[0, 200], Mod[#, 6] == 1 || Mod[#, 6] == 2 || Mod[#, 6] == 3 &] (* Vladimir Joseph Stephan Orlovsky, Jul 07 2011 *) Flatten[Table[{6n + 1, 6n + 2, 6n + 3}, {n, 0, 19}]] (* Alonso del Arte, Jul 07 2011 *) Select[Range[0, 200], MemberQ[{1, 2, 3}, Mod[#, 6]] &] (* Vincenzo Librandi, Apr 14 2015 *)
-
PARI
a(n) = 3*floor((n-1)/3) + n; \\ David Lovler, Aug 03 2022
Formula
From Johannes W. Meijer, Jun 07 2011: (Start)
a(n) = ceiling(n/3) + ceiling((n-1)/3) + ceiling((n-2)/3) + 3*ceiling((n-3)/3).
G.f.: x*(1+x+x^2+3*x^3)/((x-1)^2*(x^2+x+1)). (End)
a(n) = 3*floor((n-1)/3) + n. - Gary Detlefs, Dec 22 2011
From Wesley Ivan Hurt, Apr 13 2015: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 2*n-3 + ((2*n-3) mod 3). (End)
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = 2*n - 2 - cos(2*n*Pi/3) + sin(2*n*Pi/3)/sqrt(3).
a(3k) = 6k-3, a(3k-1) = 6k-4, a(3k-2) = 6k-5. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (9-2*sqrt(3))*Pi/36 + log(2+sqrt(3))/(2*sqrt(3)) - log(2)/6. - Amiram Eldar, Dec 14 2021
Comments