A047273 Numbers that are congruent to {0, 1, 3, 5} mod 6.
0, 1, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 19, 21, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36, 37, 39, 41, 42, 43, 45, 47, 48, 49, 51, 53, 54, 55, 57, 59, 60, 61, 63, 65, 66, 67, 69, 71, 72, 73, 75, 77, 78, 79, 81, 83, 84, 85, 87, 89, 90, 91, 93, 95, 96, 97, 99, 101, 102, 103
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Index entries for two-way infinite sequences.
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
Crossrefs
Programs
-
Haskell
a047273 n = a047273_list !! (n-1) a047273_list = 0 : 1 : 3 : 5 : map (+ 6) a047273_list -- Reinhard Zumkeller, Feb 19 2013
-
Magma
[(6*n-6+(-1)^(n div 2)+(-1)^(-n div 2))/4: n in [1..100]]; // Wesley Ivan Hurt, May 20 2016
-
Maple
seq(2*(n-floor(n/4)) - (3-I^n-(-I)^n-(-1)^n)/4, n = 0..69); # Gary Detlefs, Mar 19 2010
-
Mathematica
LinearRecurrence[{2,-2,2,-1},{0,1,3,5},80] (* Harvey P. Dale, Jan 04 2015 *)
-
PARI
a(n)=n+(n+1)\4+(n+2)\4
-
Sage
[(lucas_number1(n+2, 0, 1)+3*n)/2 for n in range(0, 70)] # Zerinvary Lajos, Mar 09 2009
Formula
G.f.: x*(1+x+x^2)/((1-x)^2*(1+x^2)) = x*(1-x^2)*(1-x^3)/((1-x)^3*(1-x^4)).
a(n) = n + A004524(n+1) = -a(-n) for all n in Z.
Starting (1, 3, 5, ...) = partial sums of (1, 2, 2, 1, 1, 2, 2, 1, 1, ...). - Gary W. Adamson, Jun 19 2008
A093719(a(n)) = 1. - Reinhard Zumkeller, Oct 01 2008
a(n) = 2*(n-floor(n/4)) - (3-I^n-(-I)^n-(-1)^n)/4, with offset 0..a(0)=0. - Gary Detlefs, Mar 19 2010
a(n) = (3*n-3+cos(Pi*n/2))/2. - R. J. Mathar, Oct 08 2010
From Wesley Ivan Hurt, May 20 2016: (Start)
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4) for n>4.
a(n) = (6*n-6+(-1)^(n/2)+(-1)^(-n/2))/4. (End)
Euler transform of length 4 sequence [3, -1, -1, 1]. - Michael Somos, Jun 24 2017
Sum_{n>=2} (-1)^n/a(n) = log(2)/3 + log(3)/2. - Amiram Eldar, Dec 16 2021
E.g.f.: (2 + 3*exp(x)*(x - 1) + cos(x))/2. - Stefano Spezia, Jul 26 2024
Comments