cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047471 Numbers that are congruent to {1, 3} mod 8.

Original entry on oeis.org

1, 3, 9, 11, 17, 19, 25, 27, 33, 35, 41, 43, 49, 51, 57, 59, 65, 67, 73, 75, 81, 83, 89, 91, 97, 99, 105, 107, 113, 115, 121, 123, 129, 131, 137, 139, 145, 147, 153, 155, 161, 163, 169, 171, 177, 179, 185, 187, 193, 195, 201, 203, 209, 211, 217, 219, 225, 227, 233
Offset: 1

Views

Author

Keywords

Examples

			For n=2, a(2) = 8*2-1-12 = 3;
For n=3, a(3) = 8*3-3-12 = 9;
For n=4, a(4) = 8*4-9-12 = 11. - _Vincenzo Librandi_, Aug 06 2010
		

Crossrefs

Union of A017077 and A017101.
Cf. A033200 (primes).

Programs

  • Haskell
    a047471 n = a047471_list !! (n-1)
    a047471_list = [n | n <- [1..], mod n 8 `elem` [1,3]]
    -- Reinhard Zumkeller, Dec 29 2012
    
  • Magma
    [4*(n-1)-(-1)^n : n in [1..80]]; // Wesley Ivan Hurt, Apr 28 2017
  • Maple
    A047471:=n->4*n - 4 - (-1)^n; seq(A047471(n), n=1..100); # Wesley Ivan Hurt, Jan 30 2014
  • Mathematica
    Table[4 n - 4 - (-1)^n, {n, 100}] (* Wesley Ivan Hurt, Jan 30 2014 *)
    #+{1,3}&/@(8*Range[0,30])//Flatten (* or *) LinearRecurrence[{1,1,-1},{1,3,9},60] (* Harvey P. Dale, Jan 05 2017 *)

Formula

G.f.: x*(1+2*x+5*x^2)/((1+x)*(1-x)^2). - Paul Barry, Apr 10 2008
a(n) = 4*(n-1)-(-1)^n. - Rolf Pleisch, Aug 04 2009
a(n) = 8*n-a(n-1)-12, with a(1)=1. - Vincenzo Librandi, Aug 06 2010
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/8 + sqrt(2)*log(sqrt(2)+1)/4. - Amiram Eldar, Dec 18 2021

Extensions

More terms from Vincenzo Librandi, Aug 06 2010