A339774 a(n) is the least k such that 3^k == A047471(n) (mod 2^A047471(n)).
0, 1, 2, 39, 23988, 2685, 1079830, 3, 1798749736, 7936950713, 314244766442, 895397198495, 65283613526364, 203550894972341, 27025091041430142, 54487836217255419, 2756442714229679952, 34856858877609547377, 2262552012902592868562, 4616799241038411627031, 4, 116433218705414728492013
Offset: 1
Keywords
Examples
a(4) = 39 because A047471(4) = 11 and 3^39 == 11 (mod 2^11).
Links
- Robert Israel, Table of n, a(n) for n = 1..831
Crossrefs
Cf. A047471.
Programs
-
Maple
f:= proc(n) local k,v; v:= subs(msolve(3^k=n,2^n),k); subs(op(indets(v))=0,v) end proc: seq(seq(f(8*i+j),j=[1,3]),i=0..10);
Formula
a((3^k - (-1)^k)/4 + 1) = k.
Comments