cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047476 Numbers that are congruent to {0, 1, 2, 3} mod 8.

Original entry on oeis.org

0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 32, 33, 34, 35, 40, 41, 42, 43, 48, 49, 50, 51, 56, 57, 58, 59, 64, 65, 66, 67, 72, 73, 74, 75, 80, 81, 82, 83, 88, 89, 90, 91, 96, 97, 98, 99, 104, 105, 106, 107, 112, 113, 114, 115, 120, 121, 122
Offset: 1

Views

Author

Keywords

Comments

Primes of this sequence are in A033203. All of these numbers satisfy the condition that n XOR 4 = n + 4. - Brad Clardy, Jul 24 2012
Numbers k such that floor(k/4) = 2*floor(k/8). - Bruno Berselli, Oct 05 2017

Crossrefs

Cf. A033203 (primes), A047467, A047471.

Programs

  • Haskell
    a047476 n = a047476_list !! (n-1)
    a047476_list = [n | n <- [1..], mod n 8 <= 3]
    -- Reinhard Zumkeller, Dec 29 2012
    
  • Magma
    I:=[0, 1, 2, 3, 8]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, May 16 2012
    
  • Maple
    A047476:=n->(-7-(-1)^n-(1-I)*(-I)^n-(1+I)*I^n+4*n)/2: seq(A047476(n), n=1..100); # Wesley Ivan Hurt, Jun 01 2016
  • Mathematica
    Select[Range[0,300], MemberQ[{0,1,2,3}, Mod[#,8]]&] (* Vincenzo Librandi, May 16 2012 *)
    LinearRecurrence[{1,0,0,1,-1},{0,1,2,3,8},100] (* G. C. Greubel, Jun 01 2016 *)
  • PARI
    x='x+O('x^100); concat(0, Vec(x^2*(1+x+x^2+5*x^3)/((1-x)^2*(1+x)*(1+x^2)))) \\ Altug Alkan, Dec 24 2015

Formula

a(n) = 8 * floor(n/4) + (n mod 4), with offset 0.. a(0)=0. - Gary Detlefs, Mar 09 2010
From Colin Barker, May 14 2012: (Start)
a(n) = (-7 - (-1)^n - (1-i)*(-i)^n - (1+i)*i^n + 4*n)/2, where i=sqrt(-1).
G.f.: x^2*(1 + x + x^2 + 5*x^3)/((1 - x)^2*(1 + x)*(1 + x^2)). (End)
a(n) = a(n-1) + a(n-4) - a(n-5). - Vincenzo Librandi, May 16 2012
a(2*k) = A047471, a(2*k-1) = A047467(k). - Wesley Ivan Hurt, Jun 01 2016
E.g.f.: 5 + sin(x) - cos(x) + (2*x - 3)*sinh(x) + 2*(x - 2)*cosh(x). - Ilya Gutkovskiy, Jun 01 2016
Sum_{n>=2} (-1)^n/a(n) = (2*sqrt(2)-1)*Pi/16 + 5*log(2)/8. - Amiram Eldar, Dec 19 2021