A047522 Numbers that are congruent to {1, 7} mod 8.
1, 7, 9, 15, 17, 23, 25, 31, 33, 39, 41, 47, 49, 55, 57, 63, 65, 71, 73, 79, 81, 87, 89, 95, 97, 103, 105, 111, 113, 119, 121, 127, 129, 135, 137, 143, 145, 151, 153, 159, 161, 167, 169, 175, 177, 183, 185, 191, 193, 199, 201, 207, 209, 215, 217, 223, 225, 231, 233
Offset: 1
References
- L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 16.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
Haskell
a047522 n = a047522_list !! (n-1) a047522_list = 1 : 7 : map (+ 8) a047522_list -- Reinhard Zumkeller, Jan 07 2012
-
Mathematica
Select[Range[1, 191, 2], JacobiSymbol[2, # ]==1&]
-
PARI
a(n)=4*n-2+(-1)^n \\ Charles R Greathouse IV, Sep 24 2015
Formula
a(n) = sqrt(8*A014494(n)+1) = sqrt(16*ceiling(n/2)*(2*n+1)+1) = sqrt(8*A056575(n)-8*(2n+1)*(-1)^n+1). - Frederick Magata (frederick.magata(AT)uni-muenster.de), Jun 17 2004
1 - 1/7 + 1/9 - 1/15 + 1/17 - ... = (Pi/8)*(1 + sqrt(2)). [Jolley] - Gary W. Adamson, Dec 16 2006
From R. J. Mathar, Feb 19 2009: (Start)
a(n) = 4n - 2 + (-1)^n = a(n-2) + 8.
G.f.: x(1+6x+x^2)/((1+x)(1-x)^2). (End)
a(n) = 8*n - a(n-1) - 8. - Vincenzo Librandi, Aug 06 2010
From Bruno Berselli, Nov 17 2010: (Start)
a(n) = -a(-n+1) = a(n-1) + a(n-2) - a(n-3).
a(n) = 8*A000217(n-1)+1 - 2*Sum_{i=1..n-1} a(i) for n > 1. (End)
E.g.f.: 1 + (4*x - 1)*cosh(x) + (4*x - 3)*sinh(x). - Stefano Spezia, May 13 2021
E.g.f.: 1 + (4*x - 3)*exp(x) + 2*cosh(x). - David Lovler, Jul 16 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sqrt(2+sqrt(2)) (A179260).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/8)*cosec(Pi/8) (A352125). (End)
Comments