A047855 a(n) = A047848(7,n).
1, 2, 12, 112, 1112, 11112, 111112, 1111112, 11111112, 111111112, 1111111112, 11111111112, 111111111112, 1111111111112, 11111111111112, 111111111111112, 1111111111111112, 11111111111111112, 111111111111111112, 1111111111111111112, 11111111111111111112, 111111111111111111112
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..200
- Wikipedia, Bijective numeration.
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Programs
-
Magma
[(10^n + 8)/9: n in [0..40]]; // G. C. Greubel, Jan 11 2025
-
Maple
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=10*a[n-1]+1 od: seq(a[n]+1, n=0..18); # Zerinvary Lajos, Mar 20 2008
-
Mathematica
Join[{1}, Table[FromDigits[PadLeft[{2}, n, 1]], {n, 30}]] (* Harvey P. Dale, Apr 17 2013 *) (10^Range[0, 29] + 8)/9 (* Alonso del Arte, Apr 12 2020 *)
-
PARI
a(n)=if(n==0,1,if(n==1,2,11*a(n-1)-10*a(n-2))) for(i=0,10,print1(a(i),",")) \\ Lambert Klasen, Jan 28 2005
-
Python
def A047855(n): return (pow(10,n) +8)//9 print([A047855(n) for n in range(41)]) # G. C. Greubel, Jan 11 2025
-
Sage
[gaussian_binomial(n,1,10)+1 for n in range(17)] # Zerinvary Lajos, May 29 2009
-
Scala
(List.fill(20)(10: BigInt)).scanLeft(1: BigInt)( * ).map(n => (n + 8)/9) // Alonso del Arte, Apr 12 2020
Formula
a(n) = (10^n + 8)/9. - Ralf Stephan, Feb 14 2004
a(0) = 1, a(1) = 2, a(n) = 11*a(n-1) - 10*a(n-2) for n > 1. - Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 28 2005
G.f.: (1 - 9*x)/(1 - 11*x + 10*x^2). - Philippe Deléham, Oct 05 2009
a(n) = 10*a(n-1) - 8 (with a(0) = 1). - Vincenzo Librandi, Aug 06 2010
From Elmo R. Oliveira, Apr 03 2025: (Start)
E.g.f.: exp(x)*(8 + exp(9*x))/9.
Extensions
More terms from Harvey P. Dale, Apr 17 2013
Comments