A048990 Catalan numbers with even index (A000108(2*n), n >= 0): a(n) = binomial(4*n, 2*n)/(2*n+1).
1, 2, 14, 132, 1430, 16796, 208012, 2674440, 35357670, 477638700, 6564120420, 91482563640, 1289904147324, 18367353072152, 263747951750360, 3814986502092304, 55534064877048198, 812944042149730764, 11959798385860453492, 176733862787006701400
Offset: 0
Examples
sqrt(2*x^-1*(1-sqrt(1-x))) = 1 + (1/8)*x + (7/128)*x^2 + (33/1024)*x^3 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Paul Barry, Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials, arXiv:1910.00875 [math.CO], 2019.
- Gi-Sang Cheon, S.-T. Jin, and L. W. Shapiro, A combinatorial equivalence relation for formal power series, Linear Algebra and its Applications, Vol. 491 (2016), pp. 123-137.
- Greg Markowsky, A method for deriving hypergeometric and related identities from the H 2 Hardy norm of conformal maps, Integral Transforms and Special Functions, Vol. 24, No. 4 (2013), pp. 302-313; arXiv preprint, arXiv:1205.2458 [math.CV], 2012.
- Khodabakhsh Hessami Pilehrood and Tatiana Hessami Pilehrood, Jacobi Polynomials and Congruences Involving Some Higher-Order Catalan Numbers and Binomial Coefficients, J. Int. Seq., Vol. 18 (2015), Article 15.11.7.
- Louis Shapiro, Random walks with absorbing points, Discrete Applied Mathematics, Vol. 39 (1992), pp. 57-67.
Crossrefs
Programs
-
Mathematica
a[n_] := CatalanNumber[2n]; Array[a, 18, 0] (* Or *) CoefficientList[ Series[ Sqrt[2]/Sqrt[1 + Sqrt[1 - 16 x]], {x, 0, 17}], x] (* Robert G. Wilson v *) CatalanNumber[Range[0,40,2]] (* Harvey P. Dale, Mar 19 2015 *)
-
MuPAD
combinat::dyckWords::count(2*n) $ n = 0..28 // Zerinvary Lajos, Apr 14 2007
-
PARI
/* G.f.: A(x) = exp( x*A(x)^4 + Integral(A(x)^4 dx) ): */ {a(n)=local(A=1+x); for(i=1, n, A=exp(x*A^4 + intformal(A^4 +x*O(x^n)))); polcoeff(A, n)} \\ Paul D. Hanna, Nov 09 2013 for(n=0, 30, print1(a(n), ", "))
-
Sage
A048990 = lambda n: hypergeometric([1-2*n,-2*n],[2],1) [Integer(A048990(n).n()) for n in range(20)] # Peter Luschny, Sep 22 2014
Formula
G.f.: A(x) = sqrt((1/8)*x^(-1)*(1-sqrt(1-16*x))).
G.f.: 2F1( (1/4, 3/4); (3/2))(16*x). - Olivier Gérard Feb 17 2011
D-finite with recurrence n*(2*n+1)*a(n) - 2*(4*n-1)*(4*n-3)*a(n-1) = 0. - R. J. Mathar, Nov 30 2012
E.g.f: 2F2(1/4, 3/4; 1, 3/2; 16*x). - Vladimir Reshetnikov, Apr 24 2013
G.f. A(x) satisfies: A(x) = exp( x*A(x)^4 + Integral(A(x)^4 dx) ). - Paul D. Hanna, Nov 09 2013
G.f. A(x) satisfies: A(x) = sqrt(1 + 4*x*A(x)^4). - Paul D. Hanna, Nov 09 2013
a(n) = hypergeom([1-2*n,-2*n],[2],1). - Peter Luschny, Sep 22 2014
a(n) ~ 2^(4*n-3/2)/(sqrt(Pi)*n^(3/2)). - Ilya Gutkovskiy, Oct 10 2016
From Peter Bala, Feb 27 2020: (Start)
a(n) = (4^n)*binomial(2*n + 1/2, n)/(4*n + 1).
O.g.f.: A(x) = sqrt(c(4*x)), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers. Cf. A228411. (End)
Sum_{n>=0} 1/a(n) = A276483. - Amiram Eldar, Nov 18 2020
Sum_{n>=0} a(n)/4^n = sqrt(2). - Amiram Eldar, Mar 16 2022
From Peter Bala, Feb 22 2023: (Start)
a(n) = (1/2^(2*n-1)) * Product_{1 <= i <= j <= 2*n-1} (i + j + 2)/(i + j - 1) for n >= 1.
a(n) = Product_{1 <= i <= j <= 2*n-1} (3*i + j + 2)/(3*i + j - 1). Cf. A024492. (End)
a(n) = Sum_{k = 0..2*n-1} (-1)^k * 4^(2*n-k-1)*binomial(2*n-1, k)*Catalan(k+1). - Peter Bala, Apr 29 2024
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^6). - Seiichi Manyama, Jun 20 2025
Comments