cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049096 Numbers k such that 2^k + 1 is divisible by a square > 1.

Original entry on oeis.org

3, 9, 10, 15, 21, 27, 30, 33, 39, 45, 50, 51, 55, 57, 63, 68, 69, 70, 75, 78, 81, 87, 90, 93, 99, 105, 110, 111, 117, 123, 129, 130, 135, 141, 147, 150, 153, 159, 165, 170, 171, 177, 182, 183, 189, 190, 195, 201, 204, 207, 210, 213, 219, 225, 230, 231, 234, 237, 243
Offset: 1

Views

Author

Keywords

Comments

Conjecture: lim n -> infinity a(n)/n = C exists and 4 < C < 9/2. There seems to be a sequence of primes p such that p^2 never divides numbers of the form 2^x + 1: the first few are 2, 7, 23, 31. - Benoit Cloitre, Aug 20 2002
That sequence is A072936. - Robert Israel, Nov 20 2015
The first case where 2^n + 1 is divisible by a square that is coprime to n is n = 182 (where 2^182 + 1 is divisible by 1093^2). - Robert Israel, Jul 07 2014
From Robert Israel, Nov 20 2015: (Start)
Numbers n such that gcd(n, 2^n + 1) > 1 or n = k m where k is odd and 2 m is the order of 2 modulo a Wieferich prime. See link "When p^2 divides 2^n + 1".
If n is in the sequence, then so is k*n for any odd k. (End)
The sequence consists of all odd multiples of { 3, 10, 55, 68, 78, 182, 301, 406, 666, ... }. - M. F. Hasler, Mar 06 2018

Examples

			9 is here because 2^9 + 1 = 513 is divisible by 9.
99 is here because 2^99 + 1 = 3^3*19*67*683*5347*20857*242099935645987 is divisible by 9, i.e. is not squarefree.
		

Crossrefs

Cf. A086982, which is just the same with base b = 10 instead of b = 2.

Programs

Formula

For any a(n+1) - a(n) <= 6 since numbers of form 3^a*(2k+1) a > 0, k >= 0, are in the sequence (2^(3*(2k+1) + 1 is divisible by 9). So are numbers of the form 20k + 10 since 2^(20k+10) + 1 is divisible by 25, 110k + 55 since 2^(110k+55) + 1 is divisible by 11^2, 78 + 156k since 2^(156k+78) + 1 is divisible by 13^2 ... - Benoit Cloitre, Aug 20 2002

Extensions

More terms from James Sellers, Dec 16 1999
More terms from Vladeta Jovovic, Apr 12 2002
Missing term 182 added by Rainer Rosenthal, Nov 01 2005