cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A091880 A049232 indexed by A000040.

Original entry on oeis.org

1, 4, 9, 14, 15, 18, 21, 22, 25, 36, 39, 40, 48, 53, 59, 65, 67, 70, 72, 73, 74, 82, 85, 88, 99, 101, 110, 114, 122, 125, 127, 129, 130, 137, 143, 146, 147, 155, 158, 168, 174, 177, 180, 181, 188, 194, 198, 200, 202, 204, 213, 216, 219, 220, 224, 226, 229, 235
Offset: 1

Views

Author

Ray Chandler, Feb 15 2004

Keywords

Comments

The asymptotic density of this sequence is 1 - 2 * Product_{p prime} (1-1/(p*(p-1))) = 1 - 2 * A005596 = 0.252088... - Amiram Eldar, Feb 28 2021

Crossrefs

Programs

  • Mathematica
    Select[Range[100], ! SquareFreeQ[Prime[ # ] + 2] &] (* Zak Seidov, Oct 28 2008 *)

Formula

a(n) = k such that A000040(k) = A049232(n).

A089176 Duplicate of A049232.

Original entry on oeis.org

2, 7, 23, 43, 47, 61, 73, 79, 97, 151, 167, 173, 223, 241, 277, 313, 331, 349, 359, 367
Offset: 1

Views

Author

Keywords

A049229 Primes p such that p-2 is not squarefree.

Original entry on oeis.org

11, 29, 47, 83, 101, 127, 137, 149, 173, 191, 227, 263, 277, 281, 317, 353, 389, 443, 461, 479, 509, 541, 569, 577, 587, 607, 641, 659, 677, 727, 821, 827, 839, 857, 877, 911, 929, 947, 977, 983, 1019, 1031, 1091, 1109, 1129, 1163, 1181, 1217, 1277, 1289
Offset: 1

Views

Author

Keywords

Comments

This sequence is infinite and its relative density in the sequence of the primes is equal to 1 - 2 * Product_{p prime} (1-1/(p*(p-1))) = 1 - 2 * A005596 = 0.252088... - Amiram Eldar, Feb 27 2021

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[2,300]],!SquareFreeQ[#-2]&] (* Harvey P. Dale, Nov 14 2012 *)
  • PARI
    isok(p) = (p>2) && isprime(p) && !issquarefree(p-2); \\ Michel Marcus, May 14 2018

A090870 a(n) is the smallest m such that d(m+k-1) = 2k for k = 1, ..., n where d(t)= prime(t+1) - prime(t) (differences of consecutive primes in arithmetic progression).

Original entry on oeis.org

2, 3, 7, 69, 1642, 12073, 12073, 6496152, 118033638, 5575956036, 165534366186, 3265469041280, 14779996741980, 5701362336480884
Offset: 1

Views

Author

Farideh Firoozbakht, Dec 11 2003

Keywords

Comments

Is this sequence infinite?

Examples

			a(8) = 6496152 because prime(6496152) = 113575727 and 113575727, 113575729, 113575733, 113575739, 113575747, 113575757, 113575769, 113575783, and 113575799 are nine consecutive primes with differences respectively 2, 4, 6, 8, 10, 12, 14, 16.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (For[m=1, !Sum[(d[m+k-1]-2k)^2, {k, n}]==0, m++ ];m); Do[Print[a[n]], {n, 8}]

Formula

a(n) = primePi(A016045(n)).

Extensions

Extended and edited by T. D. Noe, May 23 2011
a(11)-a(14) from Amiram Eldar, Sep 06 2024
Showing 1-4 of 4 results.