A049419 a(1) = 1; for n > 1, a(n) = number of exponential divisors of n.
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 4, 1, 1
Offset: 1
Examples
a(8)=2 because 2 and 2^3 are e-divisors of 8. The sets of e-divisors start as: 1:{1} 2:{2} 3:{3} 4:{2, 4} 5:{5} 6:{6} 7:{7} 8:{2, 8} 9:{3, 9} 10:{10} 11:{11} 12:{6, 12} 13:{13} 14:{14} 15:{15} 16:{2, 4, 16} 17:{17} 18:{6, 18} 19:{19} 20:{10, 20} 21:{21} 22:{22} 23:{23} 24:{6, 24}
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Andrew V. Lelechenko, Exponential and infinitary divisors, arXiv:1405.7597 [math.NT], 2014, sequence tau^(e).
- David Moews, A database of aliquot cycles.
- J. O. M. Pedersen, Tables of Aliquot Cycles.
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Via Internet Archive Wayback-Machine]
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Cached copy, pdf file only]
- László Tóth and Nicuşor Minculete, Exponential unitary divisors, arXiv:0910.2798 [math.NT], 2009.
- Tim Trudgian, The sum of the unitary divisor function, arXiv:1312.4615 [math.NT], 2013-2014, Section 3.
- Eric Weisstein's World of Mathematics, e-Divisor.
- Jie Wu, Problème de diviseurs exponentiels et entiers exponentiellement sans facteur carré, J. Theor. Nombr. Bordeaux 7 (1) (1995) 133-141.
Crossrefs
Programs
-
GAP
A049419:=n->Product(List(Collected(Factors(n)), p -> Tau(p[2]))); List([1..10^4], n -> A049419(n)); # Muniru A Asiru, Oct 29 2017
-
Haskell
a049419 = product . map (a000005 . fromIntegral) . a124010_row -- Reinhard Zumkeller, Mar 13 2012
-
Maple
A049419 := proc(n) local a; a := 1 ; for pf in ifactors(n)[2] do a := a*numtheory[tau](op(2,pf)) ; end do: a ; end proc: seq(A049419(n),n=1..20) ; # R. J. Mathar, Jul 14 2014
-
Mathematica
a[1] = 1; a[p_?PrimeQ] = 1; a[p_?PrimeQ, e_] := DivisorSigma[0, e]; a[n_] := Times @@ (a[#[[1]], #[[2]]] & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Jan 30 2012, after Vladeta Jovovic *)
-
PARI
a(n) = vecprod(apply(numdiv, factor(n)[,2])); \\ Amiram Eldar, Mar 27 2023
Formula
Multiplicative with a(p^e) = tau(e). - Vladeta Jovovic, Jul 23 2001
Sum_{k=1..n} a(k) ~ A327837 * n. - Vaclav Kotesovec, Feb 27 2023
Extensions
More terms from Jud McCranie, May 29 2000
Comments