A049432
Numbers k such that k! - (k-1)! + 1 is prime.
Original entry on oeis.org
2, 3, 4, 5, 6, 8, 13, 20, 24, 46, 59, 150, 152, 198, 683, 880, 1135, 1907, 6617, 10243, 12016
Offset: 1
Paul Jobling (paul.jobling(AT)whitecross.com)
6! - (6-1)! + 1 = 601 is prime.
A090704
Numbers k such that k*k! - 1 is prime.
Original entry on oeis.org
2, 3, 5, 7, 8, 11, 27, 77, 98, 183, 285, 290, 397, 410, 599, 717, 731, 888, 1962, 2239, 2241, 2532, 8799, 11402, 18334, 20276, 21028
Offset: 1
Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Jan 15 2004
5 is a term since 5*5! - 1 = 599 is prime.
-
Select[Range[2600],PrimeQ[#(#!)-1]&] (* Because a(22) generates a 7524 digit number to be tested for primality, the program takes a long time to run. *) (* Harvey P. Dale, May 27 2014 *)
A096986
Numbers k such that k*k! + (smallest prime > k) is prime.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 23, 29, 30, 31, 40, 164, 176, 189, 218, 370, 597, 603, 1473, 1901, 2176, 2436, 2548, 2732, 4758, 5574
Offset: 1
8 is in the sequence because 8*8!+ 11 is prime.
-
<< NumberTheory`NumberTheoryFunctions`;v={};Do[If[PrimeQ [n*n!+NextPrime[n]], v=Append[v, n];Print[v]], {n, 2400}]
-
isok(n) = isprime(n*n! + nextprime(n+1)); \\ Michel Marcus, Sep 13 2018
A049985
Primes of form k! - (k-1)! - 1.
Original entry on oeis.org
3, 17, 599, 35279, 322559, 439084799, 293999475161295508340735999999
Offset: 1
-
f[n_]:=n!-n; lst={};Do[If[PrimeQ[f[n+1]-f[n]],AppendTo[lst,f[n+1]-f[n]]],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 27 2009 *)
Select[#[[2]]-#[[1]]-1&/@Partition[Range[100]!,2,1],PrimeQ] (* Harvey P. Dale, Feb 17 2015 *)
A096985
Numbers k such that k*k! - NextPrime(k) is prime.
Original entry on oeis.org
3, 5, 8, 10, 12, 13, 23, 26, 30, 33, 38, 114, 162, 219, 265, 268, 277, 344, 463, 651, 877, 1128, 2466, 2594, 4828, 6512
Offset: 1
3 is in the sequence because 3*3! - 5 = 13 is prime.
8 is in the sequence because 8*8! - 11 = 322549 is prime.
-
<< NumberTheory`NumberTheoryFunctions`;v={};Do[If[PrimeQ [n*n!-NextPrime[n]], v=Append[v, n];Print[v]], {n, 2150}]
Select[Range[900],PrimeQ[# #!-NextPrime[#]]&] (* The program generates the first 21 terms of the sequence. To select more, increase the Range constant but the program may take a long time to run. *) (* Harvey P. Dale, Aug 16 2023 *)
Showing 1-5 of 5 results.
Comments