cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A049432 Numbers k such that k! - (k-1)! + 1 is prime.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 13, 20, 24, 46, 59, 150, 152, 198, 683, 880, 1135, 1907, 6617, 10243, 12016
Offset: 1

Views

Author

Paul Jobling (paul.jobling(AT)whitecross.com)

Keywords

Comments

a(21) > 12000. [From Donovan Johnson, Dec 18 2009]

Examples

			6! - (6-1)! + 1 = 601 is prime.
		

Crossrefs

Formula

a(n) = A090703(n) + 1. - Michael S. Branicky, Jun 11 2025

Extensions

a(15)-a(16) from Farideh Firoozbakht, Jul 18 2003
a(17)-a(20) from Donovan Johnson, Dec 18 2009
a(21) from Michael S. Branicky, Jun 11 2025

A090704 Numbers k such that k*k! - 1 is prime.

Original entry on oeis.org

2, 3, 5, 7, 8, 11, 27, 77, 98, 183, 285, 290, 397, 410, 599, 717, 731, 888, 1962, 2239, 2241, 2532, 8799, 11402, 18334, 20276, 21028
Offset: 1

Views

Author

Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Jan 15 2004

Keywords

Examples

			5 is a term since 5*5! - 1 = 599 is prime.
		

Crossrefs

Cf. A049433.

Programs

  • Mathematica
    Select[Range[2600],PrimeQ[#(#!)-1]&] (* Because a(22) generates a 7524 digit number to be tested for primality, the program takes a long time to run. *) (* Harvey P. Dale, May 27 2014 *)

Formula

a(n) = A049433(n) - 1 because n! - (n-1)! - 1 = (n-1)*(n-1)! - 1.

Extensions

More terms from Farideh Firoozbakht, Oct 31 2004
a(23)-a(24) using A049433 from Michel Marcus, May 29 2014
a(25)-a(27) from Michael S. Branicky, Jun 13 2025

A096986 Numbers k such that k*k! + (smallest prime > k) is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 23, 29, 30, 31, 40, 164, 176, 189, 218, 370, 597, 603, 1473, 1901, 2176, 2436, 2548, 2732, 4758, 5574
Offset: 1

Views

Author

Farideh Firoozbakht, Jul 31 2004

Keywords

Comments

Note that Maple, PARI etc. have different notions of what "next prime" means!
Next term is > 7500. - Jacques Tramu, Sep 12 2018
Next term is > 10^4. - Michael S. Branicky, Aug 09 2024

Examples

			8 is in the sequence because 8*8!+ 11 is prime.
		

Crossrefs

Programs

  • Mathematica
    << NumberTheory`NumberTheoryFunctions`;v={};Do[If[PrimeQ [n*n!+NextPrime[n]], v=Append[v, n];Print[v]], {n, 2400}]
  • PARI
    isok(n) = isprime(n*n! + nextprime(n+1)); \\ Michel Marcus, Sep 13 2018

Extensions

a(24)-a(27) from Jacques Tramu, Sep 12 2018
a(24) corrected by Michael S. Branicky, Aug 09 2024

A049985 Primes of form k! - (k-1)! - 1.

Original entry on oeis.org

3, 17, 599, 35279, 322559, 439084799, 293999475161295508340735999999
Offset: 1

Views

Author

Keywords

Comments

The next term has 116 digits. - Harvey P. Dale, Feb 17 2015

Crossrefs

Cf. A049433 (corresponding k), A090704.

Programs

  • Mathematica
    f[n_]:=n!-n; lst={};Do[If[PrimeQ[f[n+1]-f[n]],AppendTo[lst,f[n+1]-f[n]]],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 27 2009 *)
    Select[#[[2]]-#[[1]]-1&/@Partition[Range[100]!,2,1],PrimeQ] (* Harvey P. Dale, Feb 17 2015 *)

A096985 Numbers k such that k*k! - NextPrime(k) is prime.

Original entry on oeis.org

3, 5, 8, 10, 12, 13, 23, 26, 30, 33, 38, 114, 162, 219, 265, 268, 277, 344, 463, 651, 877, 1128, 2466, 2594, 4828, 6512
Offset: 1

Views

Author

Farideh Firoozbakht, Jul 31 2004

Keywords

Comments

For a(23), the corresponding value of k*k! - NextPrime(k) has more than 6239 digits.

Examples

			3 is in the sequence because 3*3! - 5 = 13 is prime.
8 is in the sequence because 8*8! - 11 = 322549 is prime.
		

Crossrefs

Programs

  • Mathematica
    << NumberTheory`NumberTheoryFunctions`;v={};Do[If[PrimeQ [n*n!-NextPrime[n]], v=Append[v, n];Print[v]], {n, 2150}]
    Select[Range[900],PrimeQ[# #!-NextPrime[#]]&] (* The program generates the first 21 terms of the sequence. To select more, increase the Range constant but the program may take a long time to run. *) (* Harvey P. Dale, Aug 16 2023 *)

Extensions

a(23)-a(24) from Ryan Propper, Jan 01 2008
a(25)-a(26) from Michael S. Branicky, Aug 21 2023
Showing 1-5 of 5 results.