cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A049433 Numbers k such that k! - (k-1)! - 1 is prime.

Original entry on oeis.org

3, 4, 6, 8, 9, 12, 28, 78, 99, 184, 286, 291, 398, 411, 600, 718, 732, 889, 1963, 2240, 2242, 2533, 8800, 11403, 18335, 20277, 21029
Offset: 1

Views

Author

Paul Jobling (paul.jobling(AT)whitecross.com)

Keywords

Comments

There is no further term up to 1400. - Farideh Firoozbakht, Jul 18 2003
a(25) > 12000. [Donovan Johnson, Dec 18 2009]

Examples

			6 is a term since 6! - (6-1)! - 1 = 599 is prime.
		

Crossrefs

Formula

a(n) = A090704(n) + 1 = n*n! + 1 = ((n+1)-1)*n! + 1 = (n+1)! - n! + 1 .

Extensions

More terms from Farideh Firoozbakht, Jul 18 2003
Corrected offset, edited definition and a(19)-a(24) from Donovan Johnson, Dec 18 2009
a(25)-a(27) from Michael S. Branicky, Jun 13 2025

A096986 Numbers k such that k*k! + (smallest prime > k) is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 23, 29, 30, 31, 40, 164, 176, 189, 218, 370, 597, 603, 1473, 1901, 2176, 2436, 2548, 2732, 4758, 5574
Offset: 1

Views

Author

Farideh Firoozbakht, Jul 31 2004

Keywords

Comments

Note that Maple, PARI etc. have different notions of what "next prime" means!
Next term is > 7500. - Jacques Tramu, Sep 12 2018
Next term is > 10^4. - Michael S. Branicky, Aug 09 2024

Examples

			8 is in the sequence because 8*8!+ 11 is prime.
		

Crossrefs

Programs

  • Mathematica
    << NumberTheory`NumberTheoryFunctions`;v={};Do[If[PrimeQ [n*n!+NextPrime[n]], v=Append[v, n];Print[v]], {n, 2400}]
  • PARI
    isok(n) = isprime(n*n! + nextprime(n+1)); \\ Michel Marcus, Sep 13 2018

Extensions

a(24)-a(27) from Jacques Tramu, Sep 12 2018
a(24) corrected by Michael S. Branicky, Aug 09 2024

A049985 Primes of form k! - (k-1)! - 1.

Original entry on oeis.org

3, 17, 599, 35279, 322559, 439084799, 293999475161295508340735999999
Offset: 1

Views

Author

Keywords

Comments

The next term has 116 digits. - Harvey P. Dale, Feb 17 2015

Crossrefs

Cf. A049433 (corresponding k), A090704.

Programs

  • Mathematica
    f[n_]:=n!-n; lst={};Do[If[PrimeQ[f[n+1]-f[n]],AppendTo[lst,f[n+1]-f[n]]],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 27 2009 *)
    Select[#[[2]]-#[[1]]-1&/@Partition[Range[100]!,2,1],PrimeQ] (* Harvey P. Dale, Feb 17 2015 *)

A096985 Numbers k such that k*k! - NextPrime(k) is prime.

Original entry on oeis.org

3, 5, 8, 10, 12, 13, 23, 26, 30, 33, 38, 114, 162, 219, 265, 268, 277, 344, 463, 651, 877, 1128, 2466, 2594, 4828, 6512
Offset: 1

Views

Author

Farideh Firoozbakht, Jul 31 2004

Keywords

Comments

For a(23), the corresponding value of k*k! - NextPrime(k) has more than 6239 digits.

Examples

			3 is in the sequence because 3*3! - 5 = 13 is prime.
8 is in the sequence because 8*8! - 11 = 322549 is prime.
		

Crossrefs

Programs

  • Mathematica
    << NumberTheory`NumberTheoryFunctions`;v={};Do[If[PrimeQ [n*n!-NextPrime[n]], v=Append[v, n];Print[v]], {n, 2150}]
    Select[Range[900],PrimeQ[# #!-NextPrime[#]]&] (* The program generates the first 21 terms of the sequence. To select more, increase the Range constant but the program may take a long time to run. *) (* Harvey P. Dale, Aug 16 2023 *)

Extensions

a(23)-a(24) from Ryan Propper, Jan 01 2008
a(25)-a(26) from Michael S. Branicky, Aug 21 2023

A346168 Primes p such that p*p! - 1 is prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 397, 599, 2239
Offset: 1

Views

Author

Reza K Ghazi, Jul 08 2021

Keywords

Comments

a(9) > 10^4.

Crossrefs

Prime terms of A090704.

Programs

  • Maple
    select(p -> isprime(p) and isprime(p*factorial(p) - 1), [$2 .. 600])
  • Mathematica
    Select[Range[2, 600], PrimeQ[#] && PrimeQ[#*#! - 1] &]
    Select[Prime[Range[110]],PrimeQ[# #!-1]&] (* The program generates the first 7 terms of the sequence. *) (* Harvey P. Dale, Feb 12 2025 *)
  • PARI
    a = List(); for(p=2, 600, if(isprime(p) && isprime(p*p!-1), listput(a, p))); a
    
  • Sage
    [p for p in range(2, 600) if is_prime(p) and is_prime(p*factorial(p) - 1)]
Showing 1-5 of 5 results.