A023202
Primes p such that p + 8 is also prime.
Original entry on oeis.org
3, 5, 11, 23, 29, 53, 59, 71, 89, 101, 131, 149, 173, 191, 233, 263, 269, 359, 389, 401, 431, 449, 479, 491, 563, 569, 593, 599, 653, 683, 701, 719, 743, 761, 821, 911, 929, 983, 1013, 1031, 1061, 1109, 1163, 1193, 1223, 1229, 1283, 1289, 1319, 1373, 1439
Offset: 1
- Matt C. Anderson, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe, corrected by Sean A. Irvine and Georg Fischer)
- A. Granville and G. Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.
- Maxie D. Schmidt, New Congruences and Finite Difference Equations for Generalized Factorial Functions, arXiv:1701.04741 [math.CO], 2017.
- Eric Weisstein's World of Mathematics, Twin Primes
-
Filtered([1..1500], k-> IsPrime(k) and IsPrime(k+8)); # G. C. Greubel, Feb 07 2020
-
[n: n in [0..1500] | IsPrime(n) and IsPrime(n+8)]; // Vincenzo Librandi, Nov 20 2010
-
select(n-> isprime(n) and isprime(n+8), [`$`(1..1500)]); # G. C. Greubel, Feb 07 2020
-
Select[Range[1500], PrimeQ[#] && PrimeQ[#+8]&] (* Vladimir Joseph Stephan Orlovsky, Aug 29 2008 *)
Select[Prime[Range[250]],PrimeQ[#+8]&] (* Harvey P. Dale, Dec 24 2020 *)
-
is(n)=isprime(n)&&isprime(n+8) \\ Charles R Greathouse IV, Jul 01 2013
-
[n for n in (1..1500) if is_prime(n) and is_prime(n+8)] # G. C. Greubel, Feb 07 2020
A078854
Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d=2,4 or 6) and forming d-pattern=[6, 2,6]; short d-string notation of pattern = [626].
Original entry on oeis.org
23, 53, 263, 563, 593, 1223, 1283, 1613, 2333, 2543, 3533, 4013, 4643, 5843, 6263, 6353, 6563, 10853, 11483, 14543, 15263, 17483, 19073, 19373, 19463, 23663, 26723, 29123, 32363, 34253, 41603, 48473, 49193, 49523, 51413, 51473, 71333, 75983
Offset: 1
p=23,23+6=29,23+6+2=31,23+6+2+6=37 are consecutive primes.
Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets:
A007530[242],
A078847[246],
A078848[264],
A078849[266],
A052378[424],
A078850[426],
A078851[462],
A078852[466],
A078853[624],
A078854[626],
A078855[642],
A078856[646],
A078857[662],
A078858[664],
A033451[666].
-
Transpose[Select[Partition[Prime[Range[7500]],4,1],Differences[#]=={6,2,6}&]][[1]] (* Harvey P. Dale, Apr 17 2015 *)
A078853
Initial term in sequence of four consecutive primes separated by 3 consecutive differences each <=6 (i.e., when d = 2, 4 or 6) and forming d-pattern=[6,2,4]; short d-string notation of pattern = [624].
Original entry on oeis.org
1601, 3911, 5471, 8081, 12101, 12911, 13751, 14621, 17021, 32051, 38321, 40841, 43391, 58901, 65831, 67421, 67751, 68891, 69821, 72161, 80141, 89591, 90011, 90191, 97571, 100511, 102191, 111821, 112241, 122021, 125921, 129281, 129581
Offset: 1
p=1601, 1601+6=1607, 1601+6+2=1609, 1601+6+2+4=1613 are consecutive primes.
Cf. analogous prime quadruple sequences with various possible {2, 4, 6}-difference-patterns in brackets:
A007530[242],
A078847[246],
A078848[264],
A078849[266],
A052378[424],
A078850[426],
A078851[462],
A078852[466], this sequence[624],
A078854[626],
A078855[642],
A078856[646],
A078857[662],
A078858[664],
A033451[666].
-
Transpose[Select[Partition[Prime[Range[13000]], 4, 1], Differences[#]=={6, 2, 4} &]][[1]] (* Vincenzo Librandi, Jun 27 2015 *)
A049437
Primes p such that p+2 and p+8 are also primes but p+6 is not.
Original entry on oeis.org
3, 29, 59, 71, 149, 269, 431, 569, 599, 1031, 1061, 1229, 1289, 1319, 1451, 1619, 2129, 2339, 2381, 2549, 2711, 2789, 3299, 3539, 4019, 4049, 4091, 4649, 4721, 5099, 5441, 5519, 5639, 5741, 5849, 6269, 6359, 6569, 6701, 6959, 7211
Offset: 1
p=29 is the smallest prime so that p, p+2 and p+8 are consecutive primes.
-
[p: p in PrimesUpTo(8000)| IsPrime(p+2) and IsPrime(p+8) and not IsPrime(p+6) ] // Vincenzo Librandi, Jan 28 2011
-
select(p -> isprime(p) and isprime(p+2) and isprime(p+8) and not isprime(p+6), [3, seq(i,i=5..10000, 6)]); # Robert Israel, Nov 20 2017
-
{3}~Join~Select[Partition[Prime@ Range[10^3], 3, 1], Differences@ # == {2, 6} &][[All, 1]] (* Michael De Vlieger, Nov 20 2017 *)
-
lista(nn) = forprime(p=3, nn, if(isprime(p+2) && isprime(p+8) && !isprime(p+6), print1(p, ", "))) \\ Iain Fox, Nov 20 2017
A078561
p, p+4 and p+10 are consecutive primes.
Original entry on oeis.org
19, 43, 79, 127, 163, 229, 349, 379, 439, 499, 643, 673, 937, 967, 1009, 1093, 1213, 1279, 1429, 1489, 1549, 1597, 1609, 2203, 2347, 2389, 2437, 2539, 2689, 2833, 2953, 3079, 3319, 3529, 3613, 3793, 3907, 3919, 4003, 4129, 4447, 4639, 4789, 4933, 4999
Offset: 1
Between p and p+10 [46] difference-pattern: 19(4)23(6)29;
-
Select[Prime@ Range[10^3], Differences@ NestList[NextPrime, #, 2] == {4, 6} &] (* Michael De Vlieger, May 06 2017 *)
Select[Partition[Prime[Range[700]],3,1],Differences[#]=={4,6}&][[All,1]] (* Harvey P. Dale, Mar 24 2018 *)
-
isok(p) = isprime(p) && (nextprime(p+1) == p+4) && (nextprime(p+5) == p+10); \\ Michel Marcus, Dec 20 2013
-
is(n)=isprime(n) && isprime(n+4) && isprime(n+10) && !isprime(n+6) && n>3 \\ Charles R Greathouse IV, Dec 20 2013
A078562
p, p+6 and p+10 are consecutive primes.
Original entry on oeis.org
31, 61, 73, 157, 271, 373, 433, 607, 733, 751, 1291, 1543, 1657, 1777, 1861, 1987, 2131, 2287, 2341, 2371, 2383, 2467, 2677, 2791, 2851, 3181, 3313, 3607, 3691, 4441, 4507, 4723, 4993, 5407, 5431, 5521, 5563, 5641, 5683, 5851, 6037, 6211, 6571, 6961
Offset: 1
Between p and p+10 the difference-pattern is [64] like e.g. for p=31: 31(6)37(4)41.
-
Transpose[Select[Partition[Prime[Range[1000]],3,1],#[[3]]-#[[1]]==10&[[2]]-#[[1]]==6&]][[1]] (* Harvey P. Dale, Dec 09 2010 *)
A049436
p, p+8 and either p+2 or p+6 or both are all primes.
Original entry on oeis.org
3, 5, 11, 23, 29, 53, 59, 71, 101, 131, 149, 173, 191, 233, 263, 269, 431, 563, 569, 593, 599, 653, 821, 1013, 1031, 1061, 1223, 1229, 1283, 1289, 1319, 1451, 1481, 1601, 1613, 1619, 1871, 2081, 2129, 2333, 2339, 2381, 2543, 2549, 2711, 2789, 2963, 3251
Offset: 1
3 is here because 5, 7 and 11 are primes; 5 is here because 7, 11 and 13 are primes.
-
Select[Prime[Range[500]],PrimeQ[#+8]&&AnyTrue[#+{2,6},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 04 2017 *)
A297709
Table read by antidiagonals: Let b be the number of digits in the binary expansion of n. Then T(n,k) is the k-th odd prime p such that the binary digits of n match the primality of the b consecutive odd numbers beginning with p (or 0 if no such k-th prime exists).
Original entry on oeis.org
3, 5, 7, 7, 13, 3, 11, 19, 5, 23, 13, 23, 11, 31, 7, 17, 31, 17, 47, 13, 5, 19, 37, 29, 53, 19, 11, 3, 23, 43, 41, 61, 37, 17, 0, 89, 29, 47, 59, 73, 43, 29, 0, 113, 23, 31, 53, 71, 83, 67, 41, 0, 139, 31, 19, 37, 61, 101, 89, 79, 59, 0, 181, 47, 43, 7, 41, 67
Offset: 1
13 = 1101_2, so row n=13 lists the odd primes p such that the four consecutive odd numbers p, p+2, p+4, and p+6 are prime, prime, composite, and prime, respectively; these are the terms of A022004.
14 = 1110_2, so row n=14 lists the odd primes p such that p, p+2, p+4, and p+6 are prime, prime, prime, and composite, respectively; since there is only one such prime (namely, 3), there is no such 2nd, 3rd, 4th, etc. prime, so the terms in row 14 are {3, 0, 0, 0, ...}.
15 = 1111_2, so row n=15 would list the odd primes p such that p, p+2, p+4, and p+6 are all prime, but since no such prime exists, every term in row 15 is 0.
Table begins:
n in base| k | OEIS
---------+----------------------------------------+sequence
10 2 | 1 2 3 4 5 6 7 8 | number
=========+========================================+========
1 1 | 3 5 7 11 13 17 19 23 | A065091
2 10 | 7 13 19 23 31 37 43 47 | A049591
3 11 | 3 5 11 17 29 41 59 71 | A001359
4 100 | 23 31 47 53 61 73 83 89 | A124582
5 101 | 7 13 19 37 43 67 79 97 | A029710
6 110 | 5 11 17 29 41 59 71 101 | A001359*
7 111 | 3 0 0 0 0 0 0 0 |
8 1000 | 89 113 139 181 199 211 241 283 | A083371
9 1001 | 23 31 47 53 61 73 83 131 | A031924
10 1010 | 19 43 79 109 127 163 229 313 |
11 1011 | 7 13 37 67 97 103 193 223 | A022005
12 1100 | 29 59 71 137 149 179 197 239 | A210360*
13 1101 | 5 11 17 41 101 107 191 227 | A022004
14 1110 | 3 0 0 0 0 0 0 0 |
15 1111 | 0 0 0 0 0 0 0 0 |
16 10000 | 113 139 181 199 211 241 283 293 | A124584
17 10001 | 89 359 389 401 449 479 491 683 | A031926
18 10010 | 31 47 61 73 83 151 157 167 |
19 10011 | 23 53 131 173 233 263 563 593 | A049438
20 10100 | 19 43 79 109 127 163 229 313 |
21 10101 | 0 0 0 0 0 0 0 0 |
22 10110 | 7 13 37 67 97 103 193 223 | A022005
23 10111 | 0 0 0 0 0 0 0 0 |
24 11000 | 137 179 197 239 281 419 521 617 |
25 11001 | 29 59 71 149 269 431 569 599 | A049437*
26 11010 | 17 41 107 227 311 347 461 641 |
27 11011 | 5 11 101 191 821 1481 1871 2081 | A007530
28 11100 | 0 0 0 0 0 0 0 0 |
29 11101 | 3 0 0 0 0 0 0 0 |
30 11110 | 0 0 0 0 0 0 0 0 |
31 11111 | 0 0 0 0 0 0 0 0 |
*other than the referenced sequence's initial term 3
.
Alternative version of table:
.
n in base|primal-| k | OEIS
---------+ ity +------------------------------+ seq.
10 2 |pattern| 1 2 3 4 5 6 | number
=========+=======+==============================+========
1 1 | p | 3 5 7 11 13 17 | A065091
2 10 | pc | 7 13 19 23 31 37 | A049591
3 11 | pp | 3 5 11 17 29 41 | A001359
4 100 | pcc | 23 31 47 53 61 73 | A124582
5 101 | pcp | 7 13 19 37 43 67 | A029710
6 110 | ppc | 5 11 17 29 41 59 | A001359*
7 111 | ppp | 3 0 0 0 0 0 |
8 1000 | pccc | 89 113 139 181 199 211 | A083371
9 1001 | pccp | 23 31 47 53 61 73 | A031924
10 1010 | pcpc | 19 43 79 109 127 163 |
11 1011 | pcpp | 7 13 37 67 97 103 | A022005
12 1100 | ppcc | 29 59 71 137 149 179 | A210360*
13 1101 | ppcp | 5 11 17 41 101 107 | A022004
14 1110 | pppc | 3 0 0 0 0 0 |
15 1111 | pppp | 0 0 0 0 0 0 |
16 10000 | pcccc | 113 139 181 199 211 241 | A124584
17 10001 | pcccp | 89 359 389 401 449 479 | A031926
18 10010 | pccpc | 31 47 61 73 83 151 |
19 10011 | pccpp | 23 53 131 173 233 263 | A049438
20 10100 | pcpcc | 19 43 79 109 127 163 |
21 10101 | pcpcp | 0 0 0 0 0 0 |
22 10110 | pcppc | 7 13 37 67 97 103 | A022005
23 10111 | pcppp | 0 0 0 0 0 0 |
24 11000 | ppccc | 137 179 197 239 281 419 |
25 11001 | ppccp | 29 59 71 149 269 431 | A049437*
26 11010 | ppcpc | 17 41 107 227 311 347 |
27 11011 | ppcpp | 5 11 101 191 821 1481 | A007530
28 11100 | pppcc | 0 0 0 0 0 0 |
29 11101 | pppcp | 3 0 0 0 0 0 |
30 11110 | ppppc | 0 0 0 0 0 0 |
31 11111 | ppppp | 0 0 0 0 0 0 |
.
*other than the referenced sequence's initial term 3
Cf.
A001359,
A007530,
A022004,
A022005,
A029710,
A031924,
A031926,
A049437,
A049438,
A049591,
A065091,
A124582,
A083371,
A124584,
A210360.
Showing 1-8 of 8 results.
Comments