cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049774 Number of permutations of n elements not containing the consecutive pattern 123.

Original entry on oeis.org

1, 1, 2, 5, 17, 70, 349, 2017, 13358, 99377, 822041, 7477162, 74207209, 797771521, 9236662346, 114579019469, 1516103040833, 21314681315998, 317288088082405, 4985505271920097, 82459612672301846, 1432064398910663705, 26054771465540507273, 495583804405888997218
Offset: 0

Views

Author

Tuwani A. Tshifhumulo (tat(AT)caddy.univen.ac.za)

Keywords

Comments

Permutations on n letters without double falls. A permutation w has a double fall at k if w(k) > w(k+1) > w(k+2) and has an initial fall if w(1) > w(2).
Hankel transform is A055209. - Paul Barry, Jan 12 2009
Increasing colored 1-2 trees of order n with choice of two colors for the right branches of the vertices of outdegree 2 except those vertices on the path from the root to the leftmost leaf. - Wenjin Woan, May 21 2011

Examples

			Permutations without double increase and without pattern 123:
a(3) = 5: 132, 213, 231, 312, 321.
a(4) = 17: 1324, 1423, 1432, 2143, 2314, 2413, 2431, 3142, 3214, 3241, 3412, 3421, 4132, 4213, 4231, 4312, 4321.
		

References

  • F. N. David and D. E. Barton, Combinatorial Chance, Hafner, New York, 1962, pp. 156-157.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (5.2.17).

Crossrefs

Column k=0 of A162975.
Column k=3 of A242784.
Equals 1 + A000303. - Greg Dresden, Feb 22 2020

Programs

  • Maple
    b:= proc(u, o, t) option remember;
         `if`(u+o=0, 1, add(b(u-j, o+j-1, 0), j=1..u)+
         `if`(t=1, 0,   add(b(u+j-1, o-j, 1), j=1..o)))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Nov 04 2021
  • Mathematica
    Table[Simplify[ n! SeriesCoefficient[ Series[ Sqrt[3] Exp[x/2]/(Sqrt[3] Cos[Sqrt[3]/2 x] - Sin[Sqrt[3]/2 x]), {x, 0, n}], n] ], {n, 0, 40}]
    (* Second program: *)
    b[u_, o_, t_, k_] := b[u, o, t, k] = If[t == k, (u + o)!, If[Max[t, u] + o < k, 0, Sum[b[u + j - 1, o - j, t + 1, k], {j, 1, o}] + Sum[b[u - j, o + j - 1, 1, k], {j, 1, u}]]];
    a[n_] := b[0, n, 0, 2] - b[0, n, 0, 3] + 1;
    a /@ Range[0, 40] (* Jean-François Alcover, Nov 09 2020, after Alois P. Heinz in A000303 *)

Formula

E.g.f.: 1/Sum_{i>=0} (x^(3*i)/(3*i)! - x^(3*i+1)/(3*i+1)!). [Corrected g.f. --> e.g.f. by Vaclav Kotesovec, Feb 15 2015]
Equivalently, e.g.f.: exp(x/2) * r / sin(r*x + (2/3)*Pi) where r = sqrt(3)/2. This has simple poles at (3*m+1)*x0 where x0 = Pi/sqrt(6.75) = 1.2092 approximately and m is an arbitrary integer. This yields the asymptotic expansion a(n)/n! ~ x0^(-n-1) * Sum((-1)^m * E^(3*m+1) / (3*m+1)^(n+1)) where E = exp(x0/2) = 1.8305+ and m ranges over all integers. - Noam D. Elkies, Nov 15 2001
E.g.f.: sqrt(3)*exp(x/2)/(sqrt(3)*cos(x*sqrt(3)/2) - sin(x*sqrt(3)/2) ); a(n+1) = Sum_{k=0..n} binomial(n, k)*a(k)*b(n-k) where b(n) = number of n-permutations without double falls and without initial falls. - Emanuele Munarini, Feb 28 2003
O.g.f.: A(x) = 1/(1 - x - x^2/(1 - 2*x - 4*x^2/(1 - 3*x - 9*x^2/(1 - ... - n*x - n^2*x^2/(1 - ...))))) (continued fraction). - Paul D. Hanna, Jan 17 2006
a(n) = leftmost column term of M^n*V, where M = an infinite tridiagonal matrix with (1,2,3,...) in the super, sub, and main diagonals and the rest zeros. V = the vector [1,0,0,0,...]. - Gary W. Adamson, Jun 16 2011
E.g.f.: A(x)=1/Q(0); Q(k)=1-x/((3*k+1)-(x^2)*(3*k+1)/((x^2)-3*(3*k+2)*(k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 25 2011
a(n) ~ n! * exp(Pi/(3*sqrt(3))) * (3*sqrt(3)/(2*Pi))^(n+1). - Vaclav Kotesovec, Jul 28 2013
E.g.f.: T(0)/(1-x), where T(k) = 1 - x^2*(k+1)^2/( x^2*(k+1)^2 - (1-x-x*k)*(1-2*x-x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 17 2013

Extensions

Corrected and extended by Vladeta Jovovic, Apr 14 2001