A050801 Numbers k such that k^2 is expressible as the sum of two positive cubes in at least one way.
3, 4, 24, 32, 81, 98, 108, 168, 192, 228, 256, 312, 375, 500, 525, 588, 648, 671, 784, 847, 864, 1014, 1029, 1183, 1225, 1261, 1323, 1344, 1372, 1536, 1824, 2048, 2187, 2496, 2646, 2888, 2916, 3000, 3993, 4000, 4200, 4225, 4536, 4563, 4644, 4704, 5184, 5324
Offset: 1
Examples
1183^2 = 65^3 + 104^3.
References
- Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..612 from T. D. Noe, terms 613..1000 from Harry J. Smith)
Programs
-
Maple
A050801 := proc(n) option remember ; local a,x,y ; if n =1 then 3 else for a from procname(n-1)+1 do for x from 1 do if x^3 >= a^2 then break ; end if; for y from 1 to x do if x^3+y^3 = a^2 then return a ; end if; end do: end do: end do: end if; end proc: seq(A050801(n),n=1..20) ; # R. J. Mathar, Jan 22 2025
-
Mathematica
Select[Range[5350], Reduce[0 < x <= y && #^2 == x^3 + y^3, {x,y}, Integers] =!= False &] (* Jean-François Alcover, Mar 30 2011 *) Sqrt[#]&/@Union[Select[Total/@(Tuples[Range[500],2]^3),IntegerQ[ Sqrt[ #]]&]] (* Harvey P. Dale, Mar 06 2012 *) Select[Range@ 5400, Length@ DeleteCases[PowersRepresentations[#^2, 2, 3], w_ /; Times @@ w == 0] > 0 &] (* Michael De Vlieger, May 20 2017 *)
-
PARI
is(n)=my(N=n^2); for(k=sqrtnint(N\2,3),sqrtnint(N-1,3), if(ispower(N-k^3,3), return(n>1))); 0 \\ Charles R Greathouse IV, Dec 13 2013
Formula
a(n) = sqrt(A050802(n)). - Jonathan Sondow, Oct 28 2013
Extensions
More terms from Michel ten Voorde and Jud McCranie
Comments