A000994
Shifts 2 places left under binomial transform.
Original entry on oeis.org
1, 0, 1, 1, 2, 5, 13, 36, 109, 359, 1266, 4731, 18657, 77464, 337681, 1540381, 7330418, 36301105, 186688845, 995293580, 5491595645, 31310124067, 184199228226, 1116717966103, 6968515690273, 44710457783760, 294655920067105, 1992750830574681, 13817968813639426
Offset: 0
A(x) = 1 + x^2/(1-x) + x^4/((1-x)^2*(1-2x)) + x^6/((1-x)^2*(1-2x)^2*(1-3x)) +...
- Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..650 (first 101 terms from T. D. Noe)
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210; arXiv:math/0205301 [math.CO], 2002.
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy]
- N. J. A. Sloane, Transforms
- S. Tauber, On generalizations of the exponential function, Amer. Math. Monthly, 67 (1960), 763-767.
-
a000994 n = a000994_list !! n
a000994_list = 1 : 0 : us where
us = 1 : 1 : f 2 where
f x = (1 + sum (zipWith (*) (map (a007318' x) [2..x]) us)) : f (x + 1)
-- Reinhard Zumkeller, Jun 02 2013
-
A000994 := proc(n) local k; option remember; if n <= 1 then 1 else 1 + add(binomial(n, k)*A000994(k - 2), k = 2 .. n); fi; end;
-
a[n_] := a[n] = 1 + Sum[Binomial[n, k]*a[k-2], {k, 2, n}]; Join[{1, 0}, Table[a[n], {n, 0, 24}]] (* Jean-François Alcover, Oct 11 2011, after Maple *)
-
a(n)=polcoeff(sum(k=0, n, x^(2*k)*(1-k*x)/prod(j=0, k, 1-j*x+x*O(x^n))^2), n) \\ Paul D. Hanna, Nov 02 2006
A000995
Shifts left two terms under the binomial transform.
Original entry on oeis.org
0, 1, 0, 1, 2, 4, 10, 29, 90, 295, 1030, 3838, 15168, 63117, 275252, 1254801, 5968046, 29551768, 152005634, 810518729, 4472244574, 25497104007, 149993156234, 909326652914, 5674422994544, 36408092349897, 239942657880360
Offset: 0
A(x) = x + x^3/(1-x)^2 + x^5/((1-x)*(1-2x))^2 + x^7/((1-x)*(1-2x)*(1-3x))^2 +...
- Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
a000995 n = a000995_list !! n
a000995_list = 0 : 1 : vs where
vs = 0 : 1 : g 2 where
g x = (x + sum (zipWith (*) (map (a007318' x) [2..x]) vs)) : g (x + 1)
-- Reinhard Zumkeller, Jun 02 2013
-
A000995 := proc(n) local k; option remember; if n <= 1 then n else n + add(binomial(n, k)*A000995(k - 2), k = 2 .. n); fi; end;
-
a[n_] := a[n] = If[n <= 1, n, n + Sum[Binomial[n, k]*a[k-2], {k, 2, n}]]; Join[{0, 1}, Table[a[n], {n, 0, 24}]] (* Jean-François Alcover, May 18 2011, after Maple prog. *)
(* Computation using e.g.f.: *)
nn=20; S=(Series[-2 E^(t/2) Sqrt[E^ t] (BesselI[0, 2] BesselK[0, 2 Sqrt[E^t]] - BesselK[0, 2] Hypergeometric0F1[1, E^t]), {t, 0, nn}]); Flatten[{0, 1, FullSimplify[Table[CoefficientList[Normal[S], t][[i]] (i - 1)!, {i, 1, nn}]]}] (* Pierre-Louis Giscard, Aug 12 2014 *)
-
a(n)=polcoeff(sum(k=0,n,x^(2*k+1)/prod(j=0,k,1-j*x+x*O(x^n))^2),n) \\ Paul D. Hanna, Oct 28 2006
A350456
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 + 2*x)) / (1 + 2*x).
Original entry on oeis.org
1, 1, 1, -1, 1, -3, 17, -85, 385, -1767, 8929, -50633, 312705, -2036267, 13794417, -97295069, 717808897, -5549714767, 44868094145, -377741383697, 3298933836033, -29813463964115, 278462029910993, -2685972391332837, 26733375327601281, -274247228584531767
Offset: 0
-
nmax = 25; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 + 2 x)]/(1 + 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] (-2)^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 25}]
A351184
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 + 3*x)) / (1 + 3*x).
Original entry on oeis.org
1, 1, 1, -2, 4, -11, 55, -359, 2359, -15230, 100840, -716555, 5580145, -47230091, 425472229, -4013326982, 39379161136, -402010392971, 4279164575167, -47533936734179, 550239127112107, -6618018093867506, 82447377648018700, -1061324336149876667, 14095604842846277617
Offset: 0
-
nmax = 24; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 + 3 x)]/(1 + 3 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] (-3)^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 24}]
A351185
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 + 4*x)) / (1 + 4*x).
Original entry on oeis.org
1, 1, 1, -3, 9, -31, 153, -1075, 8689, -72031, 605201, -5282051, 49239225, -497094079, 5410919273, -62597718643, 759331611489, -9586004915007, 125701843190689, -1713676634245251, 24313707650733289, -358906747784541151, 5502327502961296825, -87382907614533531443
Offset: 0
-
nmax = 23; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 + 4 x)]/(1 + 4 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] (-4)^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 23}]
A351186
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 + 5*x)) / (1 + 5*x).
Original entry on oeis.org
1, 1, 1, -4, 16, -69, 371, -2719, 24691, -243804, 2479276, -25931249, 284075601, -3320433179, 41744590941, -561939568544, 8008026088996, -119496752915869, 1854697111334891, -29870689367146379, 499291484226079551, -8668202648905259624, 156301404533216141576
Offset: 0
-
nmax = 22; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 + 5 x)]/(1 + 5 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] (-5)^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 22}]
A351187
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 + 6*x)) / (1 + 6*x).
Original entry on oeis.org
1, 1, 1, -5, 25, -131, 793, -6137, 60049, -670919, 7930321, -96775853, 1225237609, -16333089227, 232150489129, -3531321746465, 57178717416097, -975918663642767, 17400776511175201, -322309002081819221, 6188520430773389881, -123166171374344928275, 2542231599282355411897
Offset: 0
-
nmax = 22; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 + 6 x)]/(1 + 6 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] (-6)^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 22}]
Showing 1-7 of 7 results.
Comments