cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A051139 a(n) = A000994(n+2) - A000995(n+2).

Original entry on oeis.org

1, 0, 0, 1, 3, 7, 19, 64, 236, 893, 3489, 14347, 62429, 285580, 1362372, 6749337, 34683211, 184774851, 1019351071, 5813020060, 34206071992, 207391313189, 1294092695729, 8302365433863, 54713262186745, 370027343460584, 2565874205681368
Offset: 0

Views

Author

Keywords

Examples

			a(7) = 359 - 295 = 64.
		

Crossrefs

Programs

Formula

For recurrence see A000994 and A000995.

A007476 Shifts 2 places left under binomial transform.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 23, 65, 199, 654, 2296, 8569, 33825, 140581, 612933, 2795182, 13298464, 65852873, 338694479, 1805812309, 9963840219, 56807228074, 334192384460, 2026044619017, 12642938684817, 81118550133657, 534598577947465, 3615474317688778, 25070063421597484
Offset: 0

Views

Author

Keywords

Comments

Starting (1, 2, 4, 9, 23, ...) = row sums of triangle A153859. - Gary W. Adamson, Jan 02 2009
Binomial transform of the sequence starting (1, 1, 2, 4, 9, ...) = first differences of (1, 2, 4, 9, 23, ...); that is, (1, 2, 5, 14, 42, 134, 455, 1642, ...). - Gary W. Adamson, May 20 2013
Row sums of triangle A256161. - Margaret A. Readdy, Mar 16 2015
RG-words corresponding to set partitions of {1, ..., n} with every even entry appearing exactly once. - Margaret A. Readdy, Mar 16 2015
a(n) is the number of partitions of [n] whose blocks can be written such that the smallest elements form an increasing sequence and the largest elements form a decreasing sequence. a(5) = 9: 12345, 1235|4, 1245|3, 125|34, 1345|2, 135|24, 145|23, 15|234, 15|24|3. - Alois P. Heinz, Apr 24 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A246118.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 1,
          add(a(j)*binomial(n-2, j), j=0..n-2))
        end:
    seq(a(n), n=0..31);  # Alois P. Heinz, Jul 29 2019
  • Mathematica
    a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n-2, k] a[k], {k, 0, n-2}]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Aug 08 2012, after Ralf Stephan *)
  • PARI
    a(n)=if(n<2, 1, sum(k=0, n-2, binomial(n-2, k)*a(k))) /* Ralf Stephan; corrected by Manuel Blum, May 22 2010 */

Formula

G.f.: Sum_{k>=0} x^(2k)/(Product_{m=0..k-1} (1-mx) * Product_{m=0..k+1} (1-mx)).
G.f. A(x) satisfies A(x) = 1 + x + (x^2/(1-x))*A(x/(1-x)). - Vladimir Kruchinin, Nov 28 2011
a(n) = A000994(n) + A000995(n). - Peter Bala, Jan 27 2015

Extensions

Spelling correction by Jason G. Wurtzel, Aug 22 2010

A000994 Shifts 2 places left under binomial transform.

Original entry on oeis.org

1, 0, 1, 1, 2, 5, 13, 36, 109, 359, 1266, 4731, 18657, 77464, 337681, 1540381, 7330418, 36301105, 186688845, 995293580, 5491595645, 31310124067, 184199228226, 1116717966103, 6968515690273, 44710457783760, 294655920067105, 1992750830574681, 13817968813639426
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of permutations of [n-1] that avoid both of the dashed patterns 1-23 and 3-12 and start with a descent (or are a singleton). For example, a(5)=5 counts 2143, 3142, 3214, 3241, 4321. - David Callan, Nov 21 2011

Examples

			A(x) = 1 + x^2/(1-x) + x^4/((1-x)^2*(1-2x)) + x^6/((1-x)^2*(1-2x)^2*(1-3x)) +...
		

References

  • Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A143983. Cf. A007476, A088022, A086880.

Programs

  • Haskell
    a000994 n = a000994_list !! n
    a000994_list = 1 : 0 : us where
      us = 1 : 1 : f 2 where
        f x = (1 + sum (zipWith (*) (map (a007318' x) [2..x]) us)) : f (x + 1)
    -- Reinhard Zumkeller, Jun 02 2013
  • Maple
    A000994 := proc(n) local k; option remember; if n <= 1 then 1 else 1 + add(binomial(n, k)*A000994(k - 2), k = 2 .. n); fi; end;
  • Mathematica
    a[n_] := a[n] = 1 + Sum[Binomial[n, k]*a[k-2], {k, 2, n}]; Join[{1, 0}, Table[a[n], {n, 0, 24}]] (* Jean-François Alcover, Oct 11 2011, after Maple *)
  • PARI
    a(n)=polcoeff(sum(k=0, n, x^(2*k)*(1-k*x)/prod(j=0, k, 1-j*x+x*O(x^n))^2), n) \\ Paul D. Hanna, Nov 02 2006
    

Formula

Since this satisfies a recurrence similar to that of the Bell numbers (A000110), the asymptotic behavior is presumably just as complicated - see A000110 for details.
However, a(n)/A000995(n) (e.g., 77464/63117) -> 1.228..., the constant in A051148 and A051149.
O.g.f.: A(x) = Sum_{n>=0} x^(2*n)*(1-n*x)/Product_{k=0..n} (1-k*x)^2. - Paul D. Hanna, Nov 02 2006
Let S(n) = Sum_{k >= 1} k^n/k!^2. Then S(n) = a(n)*S(0) + A000995(n)*S(1) is stated in A086880, where S(0) = 2.279585302... (see A070910) and S(1) = 1.590636854... (see A096789). Cf. A088022. - Peter Bala, Jan 27 2015
G.f. A(x) satisfies: A(x) = 1 + x^2 * A(x/(1 - x)) / (1 - x). - Ilya Gutkovskiy, Aug 09 2020

A086880 a(n) = floor( sum(k=0, infinity, k^n/(k!)^2 ) ); related to generalized Bell numbers.

Original entry on oeis.org

2, 1, 2, 3, 7, 17, 45, 128, 391, 1287, 4524, 16889, 66657, 276982, 1207598, 5507362, 26203307, 129757596, 667358910, 3558097578, 19632277761, 111930731957, 658482495614, 3992062349412, 24911272290567, 159833355923362
Offset: 0

Views

Author

Paul D. Hanna, Sep 16 2003

Keywords

Comments

Define B(n) = sum(k=0, infinity, k^n/(k!)^2), then there exists a complex linear relation: B(3) = B(2) + B(1); B(4) = 2*B(3); B(5) = 2*B(4) + B(2); B(6) = 5*B(4) + 3*B(2); B(7) = 7*B(5) + B(3); B(12) = B(11) + 11*B(10); ...

Examples

			a(5) = floor(1^5/(1!)^2 + 2^5/(2!)^2 + 3^5/(3!)^2 + 4^5/(4!)^2 +...)
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[Sum[k^n/(k!)^2,{k,0,Infinity}]],{n,0,20}] (* Vaclav Kotesovec, Jul 31 2014 *)
    Flatten[{2, 1, Table[Floor[HypergeometricPFQ[ConstantArray[2, n-2], ConstantArray[1, n-1], 1]], {n,2,20}]}] (* Vaclav Kotesovec, May 23 2015 *)

Formula

sum(k>=0, k^n/(k!)^2) = A000994(n)*BesselI(0, 2) + A000995(n)*BesselI(1, 2), using Bessel function values BesselI(0, 2)=2.2795853023..., BesselI(1, 2) = 1.5906368546... (A096789) and where A000994 and A000995 shift 2 places left under binomial transform: A000994={1, 0, 1, 1, 2, 5, 13, 36, 109, 359, 1266, 4731, ...} A000995={0, 1, 0, 1, 2, 4, 10, 29, 90, 295, 1030, 3838, ...}.

A000997 From a differential equation.

Original entry on oeis.org

0, 1, 0, 0, 1, 2, 3, 5, 12, 36, 110, 326, 963, 2964, 9797, 34818, 130585, 506996, 2018454, 8238737, 34627390, 150485325, 677033911, 3147372610, 15066340824, 74025698886, 372557932434, 1919196902205, 10119758506626, 54627382038761, 301832813494746
Offset: 0

Views

Author

Keywords

Comments

Shifts 3 places left under binomial transform. - Olivier Gérard, Aug 12 2016

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000995.

Programs

  • Maple
    a := proc(n) option remember; local k; if n<=2 then [0, 1, 0][n+1] else add (binomial(n-3, k)*a(k), k=1..n-3) fi end: seq(a(n), n=0..29); # Sean A. Irvine, Mar 27 2015
  • Mathematica
    m = 30; A[_] = 0;
    Do[A[x_] = x (1 + x^2 A[x/(1 - x)]/(1 - x)) + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 23 2019 *)

Formula

G.f. A(x) satisfies: A(x) = x*(1 + x^2*A(x/(1 - x))/(1 - x)). - Ilya Gutkovskiy, May 02 2019

Extensions

More terms from Sean A. Irvine, Mar 27 2015

A351028 G.f. A(x) satisfies: A(x) = x + x^2 * A(x/(1 - 2*x)) / (1 - 2*x).

Original entry on oeis.org

0, 1, 0, 1, 4, 13, 44, 173, 792, 4009, 21608, 122761, 737340, 4696341, 31665076, 224846037, 1672266352, 12976252561, 104816144656, 880061135057, 7670326372532, 69286959112797, 647568753568636, 6251768635591613, 62255057942504968, 638658964709824185
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 03 2022

Keywords

Comments

Shifts 2 places left under 2nd-order binomial transform.

Crossrefs

Programs

  • Maple
    bintr:= proc(p) local b;
              b:= proc(n) option remember; add(p(k)*binomial(n, k), k=0..n) end
            end:
    b:= (bintr@@2)(a):
    a:= n-> `if`(n<2, n, b(n-2)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 07 2025
  • Mathematica
    nmax = 25; A[] = 0; Do[A[x] = x + x^2 A[x/(1 - 2 x)]/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 2^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 25}];
    (* another pprogram *)
    B[x_] := BesselK[0, 1]*BesselI[0, Exp[x]] - BesselI[0, 1]*BesselK[0, Exp[x]];
    a[n_] := SeriesCoefficient[FullSimplify[Series[B[x], {x, 0, n}]], n] n!;
    Table[a[n], {n, 0, 30}] (* Ven Popov, Apr 25 2025 *)

Formula

a(0) = 0, a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 2^k * a(n-k-2).
E.g.f.: BesselK(0, 1)*BesselI(0, exp(x)) - BesselI(0, 1)*BesselK(0, exp(x)). - Ven Popov, Apr 25 2025

A051148 Decimal expansion of BesselK(1,2)/BesselK(0,2).

Original entry on oeis.org

1, 2, 2, 8, 0, 3, 6, 9, 2, 9, 8, 1, 8, 9, 0, 7, 9, 7, 5, 7, 4, 2, 6, 7, 2, 4, 5, 2, 0, 8, 1, 7, 1, 8, 9, 0, 4, 2, 3, 9, 3, 6, 6, 9, 5, 2, 6, 6, 0, 8, 5, 9, 6, 9, 4, 4, 6, 7, 0, 3, 8, 1, 4, 9, 1, 3, 7, 4, 7, 1, 9, 9, 1, 5, 7, 0, 3, 8, 9, 8, 3, 9, 7, 0, 5, 3, 8, 1, 5, 2, 4, 7, 3, 8, 2, 2, 9, 2, 1
Offset: 1

Views

Author

N. J. A. Sloane, E. M. Rains

Keywords

Examples

			1.228036929818907975742672452...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ BesselK[1, 2] / BesselK[0, 2], 10, 99] // First (* Jean-François Alcover, Mar 07 2013 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 2080); x=besselk(1,2)/besselk(0,2); for (n=1, 2000, d=floor(x); x=(x-d)*10; write("b051148.txt", n, " ", d)); } \\ Harry J. Smith, Apr 29 2009

Extensions

Fixed my PARI program, had -n. - Harry J. Smith, May 19 2009

A051149 Continued fraction for BesselK(1,2)/BesselK(0,2).

Original entry on oeis.org

1, 4, 2, 1, 1, 2, 8, 1, 6, 1, 4, 2, 1, 8, 1, 1, 7, 1, 6, 4, 2, 1, 6, 1, 1, 2, 1, 1, 1, 2, 5, 1, 3, 3, 1, 3, 1, 8, 1, 1, 1, 1, 1, 2, 3, 8, 3, 29, 1, 7, 1, 57, 1, 121, 2, 14, 2, 8, 1, 1, 16, 1, 3, 1, 5, 1, 5, 1, 4, 17, 1, 5, 6, 1, 3, 2, 9, 7, 1, 4, 4, 1, 1, 16, 3, 5, 2, 1, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, E. M. Rains

Keywords

Examples

			1.228036929818907975742672452...
BesselK(1,2)/BesselK(0,2) = 1 + 1/(4 + 1/(2 + 1/(1 + 1/(1 + ...)))). - _Harry J. Smith_, Apr 29 2009
		

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[BesselK[1,2]/BesselK[0,2],90] (* Harvey P. Dale, Sep 07 2018 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 2100); x=contfrac(besselk(1,2)/besselk(0,2)); for (n=1, 2001, write("b051149.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 29 2009

A351053 G.f. A(x) satisfies: A(x) = x + x^2 * A(x/(1 - 3*x)) / (1 - 3*x).

Original entry on oeis.org

0, 1, 0, 1, 6, 28, 126, 613, 3438, 22159, 157362, 1189126, 9436320, 78690781, 692478684, 6439539457, 63106488618, 648453907216, 6952719052134, 77521908188737, 897132401326458, 10764085132255807, 133774484448519294, 1720018195807299418, 22847325911461934352
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 03 2022

Keywords

Comments

Shifts 2 places left under 3rd-order binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 24; A[] = 0; Do[A[x] = x + x^2 A[x/(1 - 3 x)]/(1 - 3 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 3^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 24}]

Formula

a(0) = 0, a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 3^k * a(n-k-2).

A351128 G.f. A(x) satisfies: A(x) = x + x^2 * A(x/(1 - 4*x)) / (1 - 4*x).

Original entry on oeis.org

0, 1, 0, 1, 8, 49, 280, 1649, 10800, 81505, 696400, 6472033, 63562872, 652984977, 7026210728, 79547049681, 949709767904, 11936248012993, 157219119485216, 2159448120457409, 30811324011852136, 455635009201780977, 6975424580445456056, 110478282815356437809
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 03 2022

Keywords

Comments

Shifts 2 places left under 4th-order binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 23; A[] = 0; Do[A[x] = x + x^2 A[x/(1 - 4 x)]/(1 - 4 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 4^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 23}]

Formula

a(0) = 0, a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 4^k * a(n-k-2).
Showing 1-10 of 20 results. Next