A051179 a(n) = 2^(2^n) - 1.
1, 3, 15, 255, 65535, 4294967295, 18446744073709551615, 340282366920938463463374607431768211455, 115792089237316195423570985008687907853269984665640564039457584007913129639935
Offset: 0
Examples
15 = 3*5; 255 = 3*5*17; 65535 = 3*5*17*257; ... - _Daniel Forgues_, Mar 07 2017
References
- M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 1999; see p. 4.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..11
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- J. H. Conway, Integral lexicographic codes, Discrete Mathematics 83.2-3 (1990): 219-235. See p. 235.
- Ben Delo and Filip Saidak, Euclid's theorem redux, Fib. Q., 57:4 (2019), 331-336.
- Index entries for sequences of form a(n+1)=a(n)^2 + ....
Programs
-
Magma
[2^(2^n)-1: n in [0..8]]; // Vincenzo Librandi, Jun 20 2011
-
Maple
A051179:=n->2^(2^n)-1; seq(A051179(n), n=0..8); # Wesley Ivan Hurt, Feb 08 2014
-
Mathematica
Table[2^(2^n)-1,{n,0,9}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2010 *)
-
PARI
a(n)=if(n<0,0,2^2^n-1)
-
Python
def A051179(n): return (1<<(1<
Chai Wah Wu, May 03 2023
Formula
a(n) = A000215(n) - 2.
a(n) = (a(n-1) + 1)^2 - 1, a(0) = 1. [ or a(n) = a(n-1)(a(n-1) + 2) ].
1 = 2/3 + 4/15 + 16/255 + 256/65535 + ... = Sum_{n>=0} A001146(n)/a(n+1) with partial sums: 2/3, 14/15, 254/255, 65534/65535, ... - Gary W. Adamson, Jun 15 2003
a(n) = b(n-1) where b(1)=1, b(n) = Product_{k=1..n-1} (b(k) + 2). - Benoit Cloitre, Sep 13 2003
A000215(n) = a(n+1) / a(n). - Daniel Forgues, Mar 07 2017
Sum_{n>=0} 1/a(n) = A048649. - Amiram Eldar, Oct 27 2020
Comments