A051597 Rows of triangle formed using Pascal's rule except begin and end n-th row with n+1.
1, 2, 2, 3, 4, 3, 4, 7, 7, 4, 5, 11, 14, 11, 5, 6, 16, 25, 25, 16, 6, 7, 22, 41, 50, 41, 22, 7, 8, 29, 63, 91, 91, 63, 29, 8, 9, 37, 92, 154, 182, 154, 92, 37, 9, 10, 46, 129, 246, 336, 336, 246, 129, 46, 10, 11, 56, 175, 375, 582, 672, 582, 375, 175, 56, 11
Offset: 0
Examples
Triangle begins as: 1; 2, 2; 3, 4, 3; 4, 7, 7, 4; 5, 11, 14, 11, 5;
Links
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
- B. E. Tenner, Spotlight tiling, Ann. Combin. 14 (4) (2010) 553.
- Index entries for triangles and arrays related to Pascal's triangle
Programs
-
GAP
T:= function(n,k) if k<0 or k>n then return 0; elif k=0 or k=n then return n+1; else return T(n-1,k-1) + T(n-1,k); fi; end; Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 18 2019
-
Haskell
a051597 n k = a051597_tabl !! n !! k a051597_row n = a051597_tabl !! n a051597_tabl = iterate (\row -> zipWith (+) ([1] ++ row) (row ++ [1])) [1] -- Reinhard Zumkeller, Nov 23 2012
-
Magma
function T(n,k) if k lt 0 or k gt n then return 0; elif k eq 0 or k eq n then return n+1; else return T(n-1,k-1) + T(n-1,k); end if; return T; end function; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 18 2019
-
Maple
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0, `if`(k=0 or k=n, n+1, T(n-1, k-1) + T(n-1, k) )) end: seq(seq(T(n, k), k=0..n), n=0..14); # Alois P. Heinz, May 27 2013
-
Mathematica
NestList[Append[ Prepend[Map[Apply[Plus, #] &, Partition[#, 2, 1]], #[[1]] + 1], #[[1]] + 1] &, {1}, 10] // Grid (* Geoffrey Critzer, May 26 2013 *) T[n_, k_] := T[n, k] = If[k<0 || k>n, 0, If[k==0 || k==n, n+1, T[n-1, k-1] + T[n-1, k]]]; Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 09 2016, after Alois P. Heinz *)
-
PARI
T(n,k) = if(k<0 || k>n, 0, if(k==0 || k==n, n+1, T(n-1, k-1) + T(n-1, k) )); for(n=0, 12, for(k=0, n, print1(T(n,k), ", "))) \\ G. C. Greubel, Nov 18 2019
-
Sage
@CachedFunction def T(n, k): if (k<0 or k>n): return 0 elif (k==0 or k==n): return n+1 else: return T(n-1, k-1) + T(n-1, k) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 18 2019
Formula
T(2n,n) = A051924(n+1). - Philippe Deléham, Nov 26 2006
T(m,n) = binomial(m+n,m) - binomial(m+n-2,m-1) (correct up to offset and transformation of square indices to triangular indices). - Bridget Tenner, Nov 09 2007
T(0,n) = T(n,0) = n+1, T(n,k) = T(n-1,k) + T(n-1,k-1), 0 < k < n.
From Peter Bala, Feb 28 2013: (Start)
T(n,k) = binomial(n,k-1) + binomial(n,k) + binomial(n,k+1) for 0 <= k <= n.
O.g.f.: (1 - xt^2)/((1 - t)(1 - xt)(1 - (1+x)t)) = 1 + (2 + 2x)t + (3 + 4x + 3x^2)t^2 + ....
Row polynomials: ((1+x+x^2)*(1+x)^n - 1 - x^(n+2))/x. (End)
Comments