cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051724 Numerator of n/12.

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 7, 2, 3, 5, 11, 1, 13, 7, 5, 4, 17, 3, 19, 5, 7, 11, 23, 2, 25, 13, 9, 7, 29, 5, 31, 8, 11, 17, 35, 3, 37, 19, 13, 10, 41, 7, 43, 11, 15, 23, 47, 4, 49, 25, 17, 13, 53, 9, 55, 14, 19, 29, 59, 5, 61, 31, 21, 16, 65, 11, 67, 17, 23, 35, 71
Offset: 0

Views

Author

Keywords

Comments

Or, numerator of n/(n+12).
Arises in the equal-tempered musical scale - see Goldstein (1977), Table 1. - N. J. A. Sloane, Aug 29 2018
A strong divisibility sequence: gcd(a(n),a(m)) = a(gcd(n,m)) for n, m >= 1. - Peter Bala, Feb 24 2019

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 269.

Crossrefs

Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A106614 thru A106621 (k = 13 thru 20).

Programs

Formula

From David W. Wilson, Jun 12 2005: (Start)
a(n) = n/gcd(n, 12).
Multiplicative with a(2^e) = 2^max(0, e-2), a(3^e) = 3^max(0,e-1), a(p^e) = p^e otherwise. (End)
From R. J. Mathar, Apr 18 2011: (Start)
a(n) = A109053(n)/12.
Dirichlet g.f.: zeta(s-1)*(1 - 2/3^s - 1/2^s + 2/6^s - 1/4^s + 2/12^s). (End)
From Peter Bala, Feb 24 2019: (Start)
a(n) = n/gcd(n,12) is a quasi-polynomial in n since gcd(n,12) is a purely periodic sequence of period 12.
O.g.f.: F(x) - F(x^2) - 2*F(x^3) - F(x^4) + 2*F(x^6) + 2*F(x^12), where F(x) = x/(1 - x)^2.
O.g.f. for reciprocals: Sum_{n >= 1} x^n/a(n) = Sum_{d divides 12} (phi(d)/d) * log(1/(1 - x^d)) = log(1/(1 - x)) + (1/2)*log(1/(1 - x^2)) + (2/3)*log(1/(1 - x^3)) + (2/4)*log(1/(1 - x^4)) + (2/6)*log(1/(1 - x^6)) + (4/12)*log(1/(1 - x^12)), where phi(n) denotes the Euler totient function A000010. (End)
Sum_{k=1..n} a(k) ~ (77/288) * n^2. - Amiram Eldar, Nov 25 2022