cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051783 Numbers k such that 3^k + 2 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 10, 14, 15, 24, 26, 36, 63, 98, 110, 123, 126, 139, 235, 243, 315, 363, 386, 391, 494, 1131, 1220, 1503, 1858, 4346, 6958, 7203, 10988, 22316, 33508, 43791, 45535, 61840, 95504, 101404, 106143, 107450, 136244, 178428, 361608, 504206, 1753088
Offset: 1

Views

Author

Jud McCranie, Dec 09 1999

Keywords

Comments

From Farideh Firoozbakht and M. F. Hasler, Dec 06 2009: (Start)
If Q is a perfect number such that gcd(Q, 3(3^a(n) + 2)) = 1, then x = 3^(a(n) - 1)*(3^a(n) + 2)*Q is a solution of the equation sigma(x) = 3(x - Q). This is a result of the following theorem:
Theorem: If Q is a (q-1)-perfect number for some prime q, then for all integers t, the equation sigma(x) = q*x - (2t+1)*Q has the solution x = q^(k-1)*p*Q whenever k is a positive integer such that p = q^k + 2t is prime, gcd(q^(k-1), p) = 1 and gcd(q^(k-1)*p,Q) = 1.
Note that by taking t = -1/2(m*q+1), this theorem gives us some solutions of the equation sigma(x) = q *(x + m*Q). See comment lines of the sequence A058959. (End)
No further terms < 200000. - Ray Chandler, Jul 31 2011
A090649 implies that 361608 is a member of this sequence. - Robert Price, Aug 18 2014
No further terms < 320000. - Luke W. Richards, Mar 04 2018
a(45) and a(46) are probable primes because a primality certificate has not yet been found. They have been verified PRP with mprime. - Luke W. Richards, May 04 2018
No further terms < 1300000. - Luke W. Richards, May 17 2018
No further terms < 1400000. - Luke W. Richards, Jul 28 2020
Conjecture: The number n = 3^k + 2 is prime if and only if 2^((n-1)/2) == -1 (mod n). - Maheswara Rao Valluri, Jun 01 2020. [Note that this is an if and only if assertion, so it does not follow from Fermat's Little Theorem. - N. J. A. Sloane, Sep 07 2020]

Examples

			3^8 + 2 = 6563 is prime, so 8 is in the sequence.
3^26 + 2 = 2541865828331, a prime number, so 26 is in the sequence.
		

Crossrefs

Programs

Extensions

{4346, 6958, 7203} from David J. Rusin, Sep 29 2000
10988 from Ray Chandler, Nov 21 2004
{22316, 33508} found by Henri Lifchitz, Sep-Oct 2002
{43791, 45535, 61840} found by Henri Lifchitz, Oct-Nov 2004
95504 found by Wojciech Florek Dec 15 2005. - Alexander Adamchuk, Mar 02 2008
Edited by N. J. A. Sloane, Dec 19 2009
{101404, 106143, 107450, 136244} from Mike Oakes, Nov 2009
178428 from Ray Chandler, Jul 29 2011
a(45)-a(46) from Luke W. Richards, May 04 2018
a(47) from Paul Bourdelais, Mar 29 2022