A051877 Partial sums of A051740.
1, 12, 57, 182, 462, 1008, 1974, 3564, 6039, 9724, 15015, 22386, 32396, 45696, 63036, 85272, 113373, 148428, 191653, 244398, 308154, 384560, 475410, 582660, 708435, 855036, 1024947, 1220842, 1445592, 1702272, 1994168, 2324784, 2697849, 3117324, 3587409
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-16.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
GAP
List([0..40], n-> (7*n+5)*Binomial(n+4,4)/5); # G. C. Greubel, Aug 29 2019
-
Magma
[(n+1)*(n+2)*(n+3)*(n+4)*(7*n+5)/120 : n in [0..40]]; // Wesley Ivan Hurt, May 02 2015
-
Maple
A051877:=n->binomial(n+4,4)*(7*n+5)/5: seq(A051877(n), n=0..40); # Wesley Ivan Hurt, May 02 2015
-
Mathematica
Table[(n+1)(n+2)(n+3)(n+4)(7n+5)/120, {n, 0, 40}] (* Vincenzo Librandi, May 03 2015 *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,12,57,182,462,1008},40] (* Harvey P. Dale, May 05 2022 *)
-
PARI
vector(40, n, (7*n-2)*binomial(n+3,4)/5) \\ G. C. Greubel, Aug 29 2019
-
Sage
[(7*n+5)*binomial(n+4,4)/5 for n in (0..40)] # G. C. Greubel, Aug 29 2019
Formula
a(n) = C(n+4, 4)*(7*n+5)/5.
G.f.: (1+6*x)/(1-x)^6.
From Wesley Ivan Hurt, May 02 2015: (Start)
a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6).
a(n) = (n+1)*(n+2)*(n+3)*(n+4)*(7*n+5)/120. (End)
E.g.f.: (5! +1320*x +2040*x^2 +920*x^3 +145*x^4 +7*x^5)*exp(x)/5!
Comments