cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051877 Partial sums of A051740.

Original entry on oeis.org

1, 12, 57, 182, 462, 1008, 1974, 3564, 6039, 9724, 15015, 22386, 32396, 45696, 63036, 85272, 113373, 148428, 191653, 244398, 308154, 384560, 475410, 582660, 708435, 855036, 1024947, 1220842, 1445592, 1702272, 1994168, 2324784, 2697849, 3117324, 3587409
Offset: 0

Views

Author

Barry E. Williams, Dec 14 1999

Keywords

Comments

Convolution of triangular numbers (A000217) and enneagonal numbers (A001106). - Bruno Berselli, Jul 21 2015

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-16.

Crossrefs

Cf. A093564 ((7, 1) Pascal, column m=5).

Programs

  • GAP
    List([0..40], n-> (7*n+5)*Binomial(n+4,4)/5); # G. C. Greubel, Aug 29 2019
  • Magma
    [(n+1)*(n+2)*(n+3)*(n+4)*(7*n+5)/120 : n in [0..40]]; // Wesley Ivan Hurt, May 02 2015
    
  • Maple
    A051877:=n->binomial(n+4,4)*(7*n+5)/5: seq(A051877(n), n=0..40); # Wesley Ivan Hurt, May 02 2015
  • Mathematica
    Table[(n+1)(n+2)(n+3)(n+4)(7n+5)/120, {n, 0, 40}] (* Vincenzo Librandi, May 03 2015 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,12,57,182,462,1008},40] (* Harvey P. Dale, May 05 2022 *)
  • PARI
    vector(40, n, (7*n-2)*binomial(n+3,4)/5) \\ G. C. Greubel, Aug 29 2019
    
  • Sage
    [(7*n+5)*binomial(n+4,4)/5 for n in (0..40)] # G. C. Greubel, Aug 29 2019
    

Formula

a(n) = C(n+4, 4)*(7*n+5)/5.
G.f.: (1+6*x)/(1-x)^6.
From Wesley Ivan Hurt, May 02 2015: (Start)
a(n) = 6*a(n-1) -15*a(n-2) +20*a(n-3) -15*a(n-4) +6*a(n-5) -a(n-6).
a(n) = (n+1)*(n+2)*(n+3)*(n+4)*(7*n+5)/120. (End)
E.g.f.: (5! +1320*x +2040*x^2 +920*x^3 +145*x^4 +7*x^5)*exp(x)/5!