A050403 Partial sums of A051877.
1, 13, 70, 252, 714, 1722, 3696, 7260, 13299, 23023, 38038, 60424, 92820, 138516, 201552, 286824, 400197, 548625, 740278, 984676, 1292830, 1677390, 2152800, 2735460, 3443895, 4298931, 5323878, 6544720, 7990312, 9692584, 11686752, 14011536, 16709385, 19826709, 23414118, 27526668
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
GAP
List([0..30], n-> (7*n+6)*Binomial(n+5, 5)/6); # G. C. Greubel, Aug 29 2019
-
Magma
[(7*n+6)*Binomial(n+5, 5)/6: n in [0..30]]; // G. C. Greubel, Aug 29 2019
-
Maple
Seq((7*n+6)*binomial(n+5, 5)/6, n=0..30); # G. C. Greubel, Aug 29 2019
-
Mathematica
Table[(7*n+6)*Binomial[n+5, 5]/6, {n,0,30}] (* G. C. Greubel, Aug 29 2019 *)
-
PARI
a(n) = binomial(n+5,5)*(7*n+6)/6; \\ Michel Marcus, Jan 09 2015
-
Sage
[(7*n+6)*binomial(n+5, 5)/6 for n in (0..30)] # G. C. Greubel, Aug 29 2019
Formula
a(n) = C(n+5, 5)*(7*n+6)/6.
G.f.: (1+6*x)/(1-x)^7.
E.g.f.: (5! +8640*x +16200*x^2 +9600*x^3 +2250*x^4 +216*x^5 +7*x^6 )*exp(x)/5!. - G. C. Greubel, Aug 29 2019
Extensions
Corrected by T. D. Noe, Nov 09 2006
Terms a(28) onward added by G. C. Greubel, Aug 29 2019
Comments