cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051925 a(n) = n*(2*n+5)*(n-1)/6.

Original entry on oeis.org

0, 0, 3, 11, 26, 50, 85, 133, 196, 276, 375, 495, 638, 806, 1001, 1225, 1480, 1768, 2091, 2451, 2850, 3290, 3773, 4301, 4876, 5500, 6175, 6903, 7686, 8526, 9425, 10385, 11408, 12496, 13651, 14875, 16170, 17538, 18981, 20501, 22100, 23780
Offset: 0

Views

Author

N. J. A. Sloane, Dec 19 1999

Keywords

Comments

Related to variance of number of inversions of a random permutation of n letters.
Zero followed by partial sums of A005563. - Klaus Brockhaus, Oct 17 2008
a(n)/12 is the variance of the number of inversions of a random permutation of n letters. See evidence in Mathematica code below. - Geoffrey Critzer, May 15 2010
The sequence is related to A033487 by A033487(n-1) = n*a(n) - Sum_{i=0..n-1} a(i) = n*(n+1)*(n+2)*(n+3)/4. - Bruno Berselli, Apr 04 2012
Deleting the two 0's leaves row 2 of the convolution array A213750. - Clark Kimberling, Jun 20 2012
For n>=4, a(n-2) is the number of permutations of 1,2...,n with the distribution of up (1) - down (0) elements 0...0110 (the first n-4 zeros), or, the same, a(n-2) is up-down coefficient {n,6} (see comment in A060351). - Vladimir Shevelev, Feb 15 2014
Minimum sum of the bottom row of a triangular array A filled with the integers [0..binomial(n, 2) - 1] that obeys the rule A[i, j] + 1 <= A[i+1, j] and A[i, j] + 1 <= A[i, j-1]. - C.S. Elder, Oct 13 2023
The preceding statement can be extended: a(n) is the minimum sum of the main antidiagonal of a n X n square array A filled eith the integers [0..n^2-1] that is increasing on each row from left to right, and on each column from top to bottom. - Yifan Xie, Dec 19 2024

References

  • V. N. Sachkov, Probabilistic Methods in Combinatorial Analysis, Cambridge, 1997.

Crossrefs

Programs

  • Magma
    I:=[0, 0, 3, 11]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Apr 27 2012
  • Mathematica
    f[{x_, y_}] := 2 y - x^2; Table[f[Coefficient[ Series[Product[Sum[Exp[i t], {i, 0, m}], {m, 1, n - 1}]/n!, {t, 0, 2}], t, {1, 2}]], {n, 0, 41}]*12 (* Geoffrey Critzer, May 15 2010 *)
    CoefficientList[Series[x^2*(3-x)/(1-x)^4,{x,0,50}],x] (* Vincenzo Librandi, Apr 27 2012 *)
    LinearRecurrence[{4,-6,4,-1},{0,0,3,11},50] (* Harvey P. Dale, Sep 07 2024 *)
  • PARI
    {print1(a=0, ","); for(n=0, 42, print1(a=a+(n+1)^2-1, ","))} \\ Klaus Brockhaus, Oct 17 2008
    

Formula

a(n) = A000330(n) - n. - Andrey Kostenko, Nov 30 2008
G.f.: x^2*(3-x)/(1-x)^4. - Colin Barker, Apr 04 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Apr 27 2012
E.g.f.: (x^2/6)*(2*x + 9)*exp(x). - G. C. Greubel, Jul 19 2017
From Amiram Eldar, Nov 10 2023: (Start)
Sum_{n>=2} 1/a(n) = 62/1225 + 24*log(2)/35.
Sum_{n>=2} (-1)^n/a(n) = 6*Pi/35 + 72*log(2)/35 - 2078/1225. (End)