A051944 a(n) = C(n)*(4*n+1) where C(n) = Catalan numbers (A000108).
1, 5, 18, 65, 238, 882, 3300, 12441, 47190, 179894, 688636, 2645370, 10192588, 39373700, 152443080, 591385545, 2298248550, 8945490510, 34867625100, 136079265630, 531693754020, 2079632696700, 8141948163960, 31904544069450, 125120702290428, 491056586546652
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Programs
-
Magma
[Catalan(n)*(4*n+1):n in [0..30] ]; // Marius A. Burtea, Jan 05 2020
-
Magma
R
:=PowerSeriesRing(Rationals(),30); (Coefficients(R!( (3 - 4*x - 3*Sqrt(1 - 4*x))/(2*x*Sqrt(1 - 4*x)))) ); // Marius A. Burtea, Jan 05 2020 -
Mathematica
Table[CatalanNumber[n](4n+1),{n,0,30}] (* Harvey P. Dale, Feb 21 2022 *)
-
PARI
{a(n)=if(n<0, 0, (4*n+1)*binomial(2*n,n)/(n+1))} /* Michael Somos, Sep 17 2006 */
Formula
The Hankel determinant transform is A025172(n-1). - Michael Somos, Sep 17 2006
-(n+1)*(4*n-3)*a(n) + 2*(4*n+1)*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Nov 19 2014
G.f.: (3 - 4*x - 3*sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)). - Ilya Gutkovskiy, Jun 13 2017
From Peter Bala, Aug 23 2025: (Start)
a(n) ~ 4^(n+1)/sqrt(Pi*n). (End)
Extensions
Terms a(21) and beyond from Andrew Howroyd, Jan 02 2020