cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051944 a(n) = C(n)*(4*n+1) where C(n) = Catalan numbers (A000108).

Original entry on oeis.org

1, 5, 18, 65, 238, 882, 3300, 12441, 47190, 179894, 688636, 2645370, 10192588, 39373700, 152443080, 591385545, 2298248550, 8945490510, 34867625100, 136079265630, 531693754020, 2079632696700, 8141948163960, 31904544069450, 125120702290428, 491056586546652
Offset: 0

Views

Author

Barry E. Williams, Dec 20 1999

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Column k=4 of A330965.

Programs

  • Magma
    [Catalan(n)*(4*n+1):n in [0..30] ]; // Marius A. Burtea, Jan 05 2020
    
  • Magma
    R:=PowerSeriesRing(Rationals(),30); (Coefficients(R!( (3 - 4*x - 3*Sqrt(1 - 4*x))/(2*x*Sqrt(1 - 4*x)))) ); // Marius A. Burtea, Jan 05 2020
  • Mathematica
    Table[CatalanNumber[n](4n+1),{n,0,30}] (* Harvey P. Dale, Feb 21 2022 *)
  • PARI
    {a(n)=if(n<0, 0, (4*n+1)*binomial(2*n,n)/(n+1))} /* Michael Somos, Sep 17 2006 */
    

Formula

The Hankel determinant transform is A025172(n-1). - Michael Somos, Sep 17 2006
-(n+1)*(4*n-3)*a(n) + 2*(4*n+1)*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Nov 19 2014
G.f.: (3 - 4*x - 3*sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)). - Ilya Gutkovskiy, Jun 13 2017
From Peter Bala, Aug 23 2025: (Start)
a(n) = binomial(2*n, n) + 3*binomial(2*n, n-1) = A000984(n) + 3*A001791(n).
a(n) ~ 4^(n+1)/sqrt(Pi*n). (End)

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 02 2020