cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051960 a(n) = C(n)*(3n+2) where C(n) = Catalan numbers = A000108.

Original entry on oeis.org

2, 5, 16, 55, 196, 714, 2640, 9867, 37180, 140998, 537472, 2057510, 7904456, 30458900, 117675360, 455657715, 1767883500, 6871173870, 26747767200, 104268528210, 406975466040, 1590307356300, 6220814327520, 24357232569150, 95452906901976, 374369872911804
Offset: 0

Views

Author

Barry E. Williams, Jan 05 2000

Keywords

Comments

If Y is a fixed 2-subset of a 2n-set X then a(n-1) is the number of n-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007
a(n-1) is the number of vertices in the n-dimensional halohedron (or equivalently, n-cycle cubeahedron). - Vincent Pilaud, May 12 2020

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A000108 and A051924.
Cf. A024482 and A097613.
Half A028283.

Programs

  • Magma
    [Catalan(n)*(3*n+2): n in [0..30]]; // Vincenzo Librandi, Oct 01 2015
  • Maple
    a := n -> 4^n*(2+3*n)*GAMMA(1/2+n)/(sqrt(Pi)*GAMMA(2+n)):
    seq(a(n), n=0..25); # Peter Luschny, Dec 14 2015
  • Mathematica
    Table[CatalanNumber[n] (3n+2), {n,0,30}] (* Michael De Vlieger, Sep 30 2015 *)
  • Maxima
    a(n):=sum(binomial(n-k+1,k)*2^(n-2*k+1)*binomial(n,k),k,0,(n+1)/2); /* Vladimir Kruchinin, Sep 30 2015 */
    
  • PARI
    a(n) = (3*n+2)*binomial(2*n, n)/(n+1);
    vector(30, n, a(n-1)) \\ Altug Alkan, Sep 30 2015
    

Formula

(n+1)*a(n) - 2*(n+2)*a(n-1) - 4*(2*n-3)*a(n-2) = 0. - conjectured by R. J. Mathar, Oct 02 2014, verified by Robert Israel, Sep 30 2015
G.f.: (1 + 2*x)/(2*x*sqrt(1-4*x)) - 1/(2*x). - Vladimir Kruchinin, Sep 30 2015.
a(n) = Sum_{k=0..(n+1)/2} (binomial(n-k+1,k)*2^(n-2*k+1)*binomial(n,k)). - Vladimir Kruchinin, Sep 30 2015.
a(n) = 4^n*(2+3*n)*Gamma(n + 1/2)/(sqrt(Pi)*Gamma(n+2)). - Peter Luschny, Dec 14 2015
a(n - 1) = A051924(n) + A000108(n - 1). - F. Chapoton, Mar 05 2022
Sum_{n>=0} a(n)/8^n = 5*sqrt(2) - 4. - Amiram Eldar, May 06 2023
E.g.f.: exp(2*x)*(2*BesselI(0,2*x) + BesselI(1,2*x)). - Stefano Spezia, May 14 2025
a(n) = 2*binomial(2*n, n) + binomial(2*n, n-1) = 2*A000984(n) + A001791(n). - Peter Bala, Aug 23 2025