cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A052033 Primes base 10 that are never primes in any smaller base b, 2<=b<10, expansions interpreted as decimal numbers.

Original entry on oeis.org

263, 269, 347, 397, 431, 461, 479, 499, 569, 599, 607, 677, 683, 719, 769, 797, 821, 929, 941, 1019, 1031, 1049, 1051, 1061, 1069, 1103, 1181, 1223, 1229, 1237, 1297, 1307, 1367, 1399, 1409, 1439, 1453, 1487, 1489, 1523, 1553, 1559, 1571, 1619, 1637
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Crossrefs

Programs

A038537 Primes base 10 that remain primes in eight bases b, 2<=b<=10, when the expansions are interpreted as decimal numbers.

Original entry on oeis.org

2, 3, 379081, 59771671, 146752831, 764479423, 1479830551, 3406187401, 5631714889, 7740024337, 8256310441, 8772257161, 9522879913, 10350894331, 12852250993, 14261996563, 16082349433, 16199980009, 17727606151, 18172964503, 18294784903, 19393314433, 19472325391, 20582035993
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Extensions

a(4)-a(7) found by Jack Brennen (see link) added by Patrick De Geest, Dec 15 1999
Terms beyond a(7) from Sebastian Petzelberger, Mar 21 2015

A236356 a(n) is the concatenation of the numbers k, 2 <= k <= 9, such that the base-k representation of n, read as a decimal number, is prime; a(n) = 0 if there is no such base.

Original entry on oeis.org

0, 3456789, 2456789, 3, 246789, 5, 4689, 57, 68, 379, 48, 9, 45, 0, 68, 59, 47, 0, 468, 0, 59, 37, 245, 0, 68, 5, 6, 59, 47, 0, 78, 0, 568, 39, 8, 0, 469, 7, 689, 0, 5, 0, 4789, 0, 6, 3, 24, 9, 8, 7, 0, 7, 4, 0, 4689, 5, 8, 3, 78, 0, 49, 0, 5, 9, 8, 9, 368, 5
Offset: 1

Views

Author

Vladimir Shevelev, Jan 23 2014

Keywords

Comments

Composite numbers n for which a(n)=0 we call absolute composite numbers.
Almost evidently that almost all integers are absolute composite numbers. Moreover, since the number of primes<=x containing no at least one digit is o(pi(x)), then, for almost all positions of prime n, a(n)=0. It is interesting to obtain an upper estimate of number of nonzero positions in the sequence, more exactly, than o(x/log(x)).
Only O(sqrt x) numbers up to x have nonzero values in this sequence. - Charles R Greathouse IV, Jan 24 2014

Examples

			Let n = 29. In bases 2, 3, ..., 9 the representations of 29 are 11101_2, 1002_3, 131_4, 104_5, 45_6, 41_7, 35_8, 32_9. In this list only 131_4 and 41_7 are primes, so a(29) = 47.
The sequence of numbers whose representations in bases 4 and 7, read in decimal, are primes are the numbers n such that a(n) contains the digits 4 and 7: 2, 3, 5, 17, 29, 43, ....
		

Crossrefs

Cf. A052026.

Programs

  • Python
    from sympy import isprime
    from sympy.ntheory import digits
    def c(n, b): return isprime(int("".join(map(str, digits(n, b)[1:]))))
    def a(n): return int("0"+"".join(k for k in "23456789" if c(n, int(k))))
    print([a(n) for n in range(1, 68)]) # Michael S. Branicky, Sep 22 2022

Extensions

Name clarified by Jon E. Schoenfield, Sep 21 2022

A084482 Primes base 10 that remain primes in all nine bases b, 2<=b<=10, when the expansions are interpreted as decimal numbers.

Original entry on oeis.org

50006393431, 727533146383, 2250332130313, 2651541199513, 4437592255351, 4877749016143, 6777899690983, 7417899095713, 7431376081543, 7766799025303, 9078654198463, 10712216924641, 12244626455491, 13562282568103, 14180813918071, 14833027106593, 19479075240913, 19971686697103, 23196986067193, 34431442237963, 36429184518721, 49198998504223
Offset: 1

Views

Author

Jack Brennen, Jun 29 2003

Keywords

Comments

a(1) found by Jack Brennen on Jul 13 2001; remaining terms computed by Jack Brennen, Nov 15 2001.
The number must end with 1, 3, 7, or 9 in each base from 2 to 10; thus must be congruent to: 1 (mod 2), 1 (mod 3), 1 or 3 (mod 4), 1 or 3 (mod 5), 1 (mod 6), 1 or 3 (mod 7), 1 or 3 or 7 (mod 8), 1 or 7 (mod 9), 1 or 3 or 7 or 9 (mod 10).

Crossrefs

Programs

  • PARI
    isok(n) = sum(b=2, 10, isprime(subst(Pol(digits(n, b)), x, 10))) == 9; \\ Michel Marcus, Mar 22 2015

Extensions

Thanks to David W. Wilson for proposing the sequence and W. Edwin Clark for verifying the terms using Maple's command isprime.

A052027 Primes in base 10 that remain primes in seven bases b, 2<=b<=10, expansions interpreted as decimal numbers.

Original entry on oeis.org

5, 9241, 17791, 330289, 391231, 1005481, 1210483, 2378143, 2469241, 2779939, 2840041, 6817501, 8320831, 9865711, 10871407, 11087191, 12259603, 13645393, 15665833, 16707883, 17694463, 25751863, 27794287, 31488481
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range@ 100000], Count[PrimeQ /@ Table[FromDigits[IntegerDigits[#, i]], {i, 2, 10}], True] == 7 &] (* Michael De Vlieger, Mar 21 2015, after Harvey P. Dale at A052032 *)

Extensions

Missing terms 2378143 and 2469241 added by Sebastian Petzelberger, Mar 21 2015

A052032 Primes base 10 that remain prime in one (and only one) other base b, 2<=b<10, expansions interpreted as decimal numbers.

Original entry on oeis.org

41, 53, 73, 107, 113, 131, 137, 139, 167, 173, 223, 233, 239, 257, 271, 293, 317, 389, 401, 467, 491, 509, 521, 557, 593, 641, 661, 691, 701, 739, 761, 809, 827, 829, 839, 853, 859, 863, 881, 887, 911, 937, 971, 977, 991, 1013, 1063, 1109, 1129, 1151, 1153
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[200]],Count[PrimeQ/@Table[FromDigits[ IntegerDigits[ #,i]],{i,2,9}],True]==1&] (* Harvey P. Dale, Oct 13 2012 *)

Extensions

Definition clarified by Harvey P. Dale, Oct 13 2012

A052028 Primes base 10 that remain primes in six bases b, 2<=b<=10, expansions interpreted as decimal numbers.

Original entry on oeis.org

157, 523, 1249, 1483, 1753, 4051, 9187, 10531, 22921, 25981, 29599, 35899, 51031, 57751, 67579, 79939, 98323, 103561, 110581, 148471, 150193, 150343, 249703, 259183, 277063, 278623, 331081, 335833, 353401, 391903, 424819, 435553, 504547
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Crossrefs

Programs

A256350 Composites in base 10 that remain composite in exactly eight bases b, 2 <= b <= 10, expansions interpreted as decimal numbers.

Original entry on oeis.org

4, 6, 12, 26, 27, 35, 38, 45, 46, 48, 49, 50, 52, 56, 57, 58, 63, 64, 65, 66, 68, 77, 81, 82, 84, 85, 88, 95, 105, 116, 117, 118, 119, 121, 122, 134, 136, 138, 142, 153, 154, 161, 165, 166, 171, 175, 176, 187, 188, 190, 192, 195, 207, 208, 218, 219, 220, 225
Offset: 1

Views

Author

Sebastian Petzelberger, Mar 25 2015

Keywords

Crossrefs

A256356 Composites in base 10 that remain composite in exactly two bases b, 2 <= b <= 10, expansions interpreted as decimal numbers.

Original entry on oeis.org

33247243, 64037779, 104865433, 130237003, 238561081, 550677781, 947051353, 1013991553, 1246382791, 1343122201, 1607697631, 1609062751, 1632753601, 1788658063, 2203645111, 2364166213, 2393866411, 2480419783, 2518589671, 2544177511, 2668538575, 3029334883
Offset: 1

Views

Author

Sebastian Petzelberger, Mar 25 2015

Keywords

Comments

Are there any remaining composites in only one other base?

Crossrefs

A052029 Primes base 10 that remain primes in five bases b, 2<=b<=10, expansions interpreted as decimal numbers.

Original entry on oeis.org

7, 43, 71, 163, 199, 283, 307, 367, 463, 571, 757, 1033, 1163, 1627, 1873, 2683, 3041, 3691, 3967, 4483, 4651, 4729, 4951, 4973, 5407, 6073, 6961, 7351, 7537, 8053, 8599, 9103, 9817, 10321, 10831, 11251, 11383, 11743, 12433, 12853, 13219, 14419, 14479
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range@ 1800], Count[PrimeQ /@ Table[FromDigits[IntegerDigits[#, i]], {i, 2, 10}], True] == 5 &] (* Michael De Vlieger, Mar 20 2015, after Harvey P. Dale at A052032 *)
  • PARI
    lista(nn, nb=5) = {forprime(p=2, nn, if (sum(b=2, 10, isprime(subst(Pol(digits(p, b)), x, 10))) == nb, print1(p, ", ")););} \\ Michel Marcus, Mar 21 2015
Showing 1-10 of 19 results. Next