cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A053600 a(1) = 2; for n>=1, a(n+1) is the smallest palindromic prime with a(n) as a central substring.

Original entry on oeis.org

2, 727, 37273, 333727333, 93337273339, 309333727333903, 1830933372733390381, 92183093337273339038129, 3921830933372733390381293, 1333921830933372733390381293331, 18133392183093337273339038129333181
Offset: 1

Views

Author

G. L. Honaker, Jr., Jan 20 2000

Keywords

Examples

			As a triangle:
.........2
........727
.......37273
.....333727333
....93337273339
..309333727333903
1830933372733390381
		

References

  • G. L. Honaker, Jr. and Chris K. Caldwell, Palindromic Prime Pyramids, J. Recreational Mathematics, Vol. 30(3) 169-176, 1999-2000.

Crossrefs

Programs

  • Mathematica
    d[n_] := IntegerDigits[n]; t = {x = 2}; Do[i = 1; While[! PrimeQ[y = FromDigits[Flatten[{z = d[i], d[x], Reverse[z]}]]], i++]; AppendTo[t, x = y], {n, 10}]; t (* Jayanta Basu, Jun 24 2013 *)
  • Python
    from gmpy2 import digits, mpz, is_prime
    A053600_list, p = [2], 2
    for _ in range(30):
        m, ps = 1, digits(p)
        s = mpz('1'+ps+'1')
        while not is_prime(s):
            m += 1
            ms = digits(m)
            s = mpz(ms+ps+ms[::-1])
        p = s
        A053600_list.append(int(p)) # Chai Wah Wu, Apr 09 2015

A052205 a(n+1) is smallest palindromic prime containing exactly 3 more digits on each end than the previous term, with a(n) as a central substring.

Original entry on oeis.org

2, 1022201, 1051022201501, 1241051022201501421, 1071241051022201501421701, 1051071241051022201501421701501, 1091051071241051022201501421701501901, 1351091051071241051022201501421701501901531
Offset: 1

Views

Author

G. L. Honaker, Jr., Jan 28 2000

Keywords

Crossrefs

Extensions

Shown to be finite by Felice Russo

A052092 Lengths of the palindromic primes from Honaker's sequence A053600.

Original entry on oeis.org

1, 3, 5, 9, 11, 15, 19, 23, 25, 31, 35, 41, 45, 49, 55, 59, 63, 69, 75, 81, 87, 93, 99, 105, 109, 113, 119, 125, 129, 133, 139, 145, 151, 157, 161, 167, 173, 179, 185, 191, 195, 201, 207, 213, 219, 225, 231, 237, 243, 249, 255, 261, 267, 273, 279, 285, 291, 297
Offset: 0

Views

Author

Patrick De Geest, Jan 15 2000

Keywords

Comments

Since the terms from a(34) onward are currently only probable primes, the lengths given in this sequence beyond that point are only provisional.
For n > 0, a(n) = a(n-1)+2*m where m is the number of digits of A052091(n). - Chai Wah Wu, Dec 03 2015

Crossrefs

Programs

  • Python
    from sympy import isprime
    A052092_list, l, p = [1], 1, 2
    for _ in range(100):
        m, ps = 1, str(p)
        s = int('1'+ps+'1')
        while not isprime(s):
            m += 1
            ms = str(m)
            if ms[0] in '268':
                ms = str(int(ms[0])+1) + '0'*(len(ms)-1)
                m = int(ms)
            if ms[0] in '45':
                ms = '7' + '0'*(len(ms)-1)
                m = int(ms)
            s = int(ms+ps+ms[::-1])
        p = s
        l += 2*len(ms)
        A052092_list.append(l) # Chai Wah Wu, Dec 02 2015

Extensions

Comments from G. L. Honaker, Jr., Mar 30 2000
Edited by T. D. Noe, Oct 30 2008

A034276 Smallest prime that generates a prime pyramid of height n.

Original entry on oeis.org

11, 29, 2, 5, 41, 251, 43, 145577, 51941, 4372877, 26901631, 366636187, 15387286403, 218761753811, 3313980408469
Offset: 1

Views

Author

Felice Russo, Jan 25 2000

Keywords

Comments

Let p be prime; look for the smallest prime in {1|p|1, 3|p|3, 7|p|7, 9|p|9}, where '|' stands for concatenation; repeat until no such prime can be found; then height(p) = number of rows in pyramid.
a(13) > 10^10. - Donovan Johnson, Aug 13 2010

Examples

			Example for p=43: 43 3433 334333 93343339 3933433393 939334333939 39393343339393, stop; height(43)=7.
		

Crossrefs

Extensions

More terms from Naohiro Nomoto, Jul 14 2001
a(11)-a(12) from Donovan Johnson, Aug 13 2010
a(13) from Chai Wah Wu, Apr 10 2015
a(14)-a(15) from Giovanni Resta, May 15 2020
Showing 1-4 of 4 results.