cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052216 Sums of two powers of 10.

Original entry on oeis.org

2, 11, 20, 101, 110, 200, 1001, 1010, 1100, 2000, 10001, 10010, 10100, 11000, 20000, 100001, 100010, 100100, 101000, 110000, 200000, 1000001, 1000010, 1000100, 1001000, 1010000, 1100000, 2000000, 10000001, 10000010, 10000100, 10001000, 10010000, 10100000, 11000000, 20000000
Offset: 1

Views

Author

Henry Bottomley, Feb 01 2000

Keywords

Comments

Numbers whose digit sum is 2.
A007953(a(n)) = 2; number of repdigits = #{2,11} = A242627(2) = 2. - Reinhard Zumkeller, Jul 17 2014
By extension, numbers k such that digitsum(k)^2 - 1 is prime. (PROOF: For any number k whose digit sum d > 2, d^2 - 1 = (d+1)*(d-1) and thus is not prime.) - Christian N. K. Anderson, Apr 22 2024

Examples

			From _Bruno Berselli_, Mar 07 2013: (Start)
The triangular array starts (see formula):
        2;
       11,      20;
      101,     110,     200;
     1001,    1010,    1100,    2000;
    10001,   10010,   10100,   11000,   20000;
   100001,  100010,  100100,  101000,  110000,  200000;
  1000001, 1000010, 1000100, 1001000, 1010000, 1100000, 2000000;
  ...
(End)
		

Crossrefs

Subsequence of A069263 and A107679. A038444 is a subsequence.
Sums of n powers of 10: A011557 (1), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Haskell
    a052216 n = a052216_list !! (n-1)
    a052216_list = 2 : f [2] 9 where
       f xs@(x:_) z = ys ++ f ys (10 * z) where
                      ys = (x + z) : map (* 10) xs
    -- Reinhard Zumkeller, Jan 28 2015, Jul 17 2014
    
  • Magma
    [n: n in [1..10100000] | &+Intseq(n) eq 2]; // Vincenzo Librandi, Mar 07 2013
    
  • Magma
    /* As a triangular array: */ [[10^n+10^m: m in [0..n]]: n in [0..8]]; // Bruno Berselli, Mar 07 2013
    
  • Mathematica
    t = 10^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* T. D. Noe, Oct 09 2011 *)
    With[{nn=7},Sort[Join[Table[FromDigits[PadRight[{2},n,0]],{n,nn}], FromDigits/@Flatten[Table[Table[Insert[PadRight[{1},n,0],1,i]],{n,nn},{i,2,n+1}],1]]]] (* Harvey P. Dale, Nov 15 2011 *)
    Select[Range[10^9], Total[IntegerDigits[#]] == 2&] (* Vincenzo Librandi, Mar 07 2013 *)
    T[n_,k_]:=10^(n-1)+10^(k-1); Table[T[n,k],{n,8},{k,n}]//Flatten (* Stefano Spezia, Nov 03 2023 *)
  • PARI
    a(n)=my(d=(sqrtint(8*n)-1)\2,t=n-d*(d+1)/2-1); 10^d + 10^t \\ Charles R Greathouse IV, Dec 19 2016
    
  • Python
    from itertools import count, islice
    def agen(): yield from (10**i + 10**j for i in count(0) for j in range(i+1))
    print(list(islice(agen(), 34))) # Michael S. Branicky, May 15 2022
    
  • Python
    from math import isqrt
    def A052216(n): return 10**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+10**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 08 2025
    
  • SageMath
    def A052216(n,k): return 10^(n-1) + 10^(k-1)
    flatten([[A052216(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Feb 22 2024

Formula

T(n,k) = 10^(n-1) + 10^(k-1) with 1 <= k <= n.
a(n) = 3*A237424(n) - 1. - Reinhard Zumkeller, Jan 28 2015
a(n) = 10^A003056(n-1) + 10^A002262(n-1). - Chai Wah Wu, Apr 08 2025