cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A052343 Number of ways to write n as the unordered sum of two triangular numbers (zero allowed).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 1, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 2, 1, 1, 1, 0, 0, 2, 1, 0, 1, 2, 0, 1, 1, 0, 2, 0, 0, 0, 2, 2, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 1, 0, 1, 1, 0, 2, 1, 0, 0, 2, 0, 1, 1, 0, 3, 0, 1, 1, 0, 0, 1, 1, 0, 1, 2, 1, 1, 2, 0, 0, 1, 0, 1, 1, 1
Offset: 0

Views

Author

Christian G. Bower, Jan 23 2000

Keywords

Comments

Number of ways of writing n as a sum of a square and twice a triangular number (zeros allowed). - Michael Somos, Aug 18 2003
a(A020757(n))=0; a(A020756(n))>0; a(A119345(n))=1; a(A118139(n))>1. - Reinhard Zumkeller, May 15 2006
Also, number of ways to write 4n+1 as the unordered sum of two squares of nonnegative integers. - Vladimir Shevelev, Jan 21 2009
The average value of a(n) for n <= x is Pi/4 + O(1/sqrt(x)). - Vladimir Shevelev, Feb 06 2009

Examples

			G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^6 + x^7 + x^9 + x^10 + x^11 + ...
		

Crossrefs

Programs

  • Haskell
    a052343 = (flip div 2) . (+ 1) . a008441
    -- Reinhard Zumkeller, Jul 25 2014
  • Maple
    A052343 := proc(n)
        local a,t1idx,t2idx,t1,t2;
        a := 0 ;
        for t1idx from 0 do
            t1 := A000217(t1idx) ;
            if t1 > n then
                break;
            end if;
            for t2idx from t1idx do
                t2 := A000217(t2idx) ;
                if t1+t2 > n then
                    break;
                elif t1+t2 = n then
                    a := a+1 ;
                end if;
            end do:
        end do:
        a ;
    end proc: # R. J. Mathar, Apr 28 2020
  • Mathematica
    Length[PowersRepresentations[4 # + 1, 2, 2]] & /@ Range[0, 101] (* Ant King, Dec 01 2010 *)
    d1[k_]:=Length[Select[Divisors[k],Mod[#,4]==1&]];d3[k_]:=Length[Select[Divisors[k],Mod[#,4]==3&]];f[k_]:=d1[k]-d3[k];g[k_]:=If[IntegerQ[Sqrt[4k+1]],1/2 (f[4k+1]+1),1/2 f[4k+1]];g[#]&/@Range[0,101] (* Ant King, Dec 01 2010 *)
    a[ n_] := Length @ Select[ Table[ Sqrt[n - i - i^2], {i, 0, Quotient[ Sqrt[4 n + 1] - 1, 2]}], IntegerQ]; (* Michael Somos, Jul 28 2015 *)
    a[ n_] := Length @ FindInstance[ {j >= 0, k >= 0, j^2 + k^2 + k == n}, {k, j}, Integers, 10^9]; (* Michael Somos, Jul 28 2015 *)
  • PARI
    {a(n) = if( n<0, 0, sum(i=0, (sqrtint(4*n + 1) - 1)\2, issquare(n - i - i^2)))}; /* Michael Somos, Aug 18 2003 */
    

Formula

a(n) = ceiling(A008441(n)/2). - Reinhard Zumkeller, Nov 03 2009
G.f.: (Sum_{k>=0} x^(k^2 + k)) * (Sum_{k>=0} x^(k^2)). - Michael Somos, Aug 18 2003
Recurrence: a(n) = Sum_{k=1..r(n)} r(2n-k^2+k) - C(r(n),2) - a(n-1) - a(n-2) - ... - a(0), n>=1,a (0)=1, where r(n)=A000194(n+1) is the nearest integer to square root of n+1. For example, since r(6)=3, a(6) = r(12) + r(10) + r(6) - C(3,2) - a(5) - ... - a(0) = 4 + 3 + 3 - 3 - 0 - 1 - 1 - 1 - 1 - 1 = 2. - Vladimir Shevelev, Feb 06 2009
a(n) = A025426(8n+2). - Max Alekseyev, Mar 09 2009
a(n) = (A002654(4n+1) + A010052(4n+1)) / 2. - Ant King, Dec 01 2010
a(2*n + 1) = A053692(n). a(4*n + 1) = A259287(n). a(4*n + 3) = A259285(n). a(6*n + 1) = A260415(n). a(6*n + 4) = A260516(n). - Michael Somos, Jul 28 2015
a(3*n) = A093518(n). a(3*n + 1) = A121444(n). a(9*n + 2) = a(n). a(9*n + 5) = a(9*n + 8) = 0. - Michael Somos, Jul 28 2015
Convolution of A005369 and A010052. - Michael Somos, Jul 28 2015

A053587 Indices of A052344 (ways to write n as sum of two nonzero triangular numbers) where record values are reached.

Original entry on oeis.org

2, 16, 81, 471, 1056, 1381, 6906, 17956, 34531, 40056, 200281, 520731, 1001406, 1482081, 7410406, 19267056, 37052031, 60765331, 303826656, 789949306, 1519133281, 3220562556, 13429138206, 16102812781, 41867313231, 80514063906, 196454315931, 711744324931
Offset: 1

Views

Author

Jeremy Rouse, Jan 19 2000

Keywords

Comments

The subsequence of primes begins: 2, 1381, 1519133281 [Jonathan Vos Post, Feb 01 2011].

Examples

			The order of the terms is ignored when deciding in how many ways the sum can be expressed. For example, a(2) does not equal 9, although 9 = 3 + 6 = 6 + 3.
a(2) = 16 because 16 = 1 + 15 = 6 + 10. a(3) = 81 because 81 = 3 + 78 = 15 + 66 = 36 + 55.
		

Crossrefs

Probably differs from A052348 only at n=1, 2, 4.

Extensions

More terms from Christian G. Bower, Jan 23 2000
a(25)-a(26) from Donovan Johnson, Jun 26 2010
a(27)-a(28) from Donovan Johnson, Mar 20 2013

A052346 Smallest number which is the sum of two positive triangular numbers in exactly n different ways.

Original entry on oeis.org

1, 2, 16, 81, 471, 1056, 1381, 11781, 6906, 17956, 34531, 123256, 40056, 4462656, 305256, 448906, 200281, 1957231, 520731, 10563906, 1001406, 11222656, 539550781, 3454506, 1482081, 75865156, 7172606106, 8852431, 25035156, 334020781, 13018281, 38531031, 7410406, 7014160156
Offset: 0

Views

Author

Christian G. Bower, Jan 23 2000

Keywords

Comments

From Chai Wah Wu, Oct 20 2023: (Start)
Other terms:
a(35) = 42980356
a(36) = 19267056
a(38) = 1289707656
a(39) = 2782318906
a(40) = 37052031
a(41) = 256720506
a(42) = 325457031
a(45) = 221310781
a(47) = 550240551
a(48) = 60765331
a(50) = 2200089531
a(54) = 327539956
a(56) = 926300781
a(59) = 7629645156
a(60) = 481676406
a(63) = 4598740656
a(64) = 303826656
a(68) = 6418012656
a(71) = 4579579956
a(72) = 789949306
a(80) = 1519133281
a(81) = 9498658731
a(84) = 12041910156
a(90) = 8188498906
a(96) = 3220562556
a(108) = 13429138206
(End)

Examples

			a(4) = 471 because 471 is the sum of two positive triangular numbers in exactly 4 different ways (as 300+171, 351+120, 435+36, and 465 + 6), and there is no smaller number that has this property.
		

Crossrefs

Extensions

a(27), a(28) = 8852431, 25035156; a(26) not yet found
a(26) from Donovan Johnson, Nov 17 2008
Name edited (added the qualifier "positive"), example edited, and a(29)-a(32) added by Jon E. Schoenfield, Jul 16 2017
a(33) from Chai Wah Wu, Oct 20 2023

A052348 Indices of A052343 (ways to write n as sum of two triangular numbers) where record values are reached.

Original entry on oeis.org

0, 6, 81, 276, 1056, 1381, 6906, 17956, 34531, 40056, 200281, 520731, 1001406, 1482081, 7410406, 19267056, 37052031, 60765331, 303826656, 789949306, 1519133281, 3220562556, 13429138206, 16102812781, 41867313231, 80514063906, 196454315931, 711744324931
Offset: 1

Views

Author

Christian G. Bower, Jan 23 2000

Keywords

Examples

			a(2) = 6 because 6 = 6 + 0 = 3 + 3. a(3) = 81 because 81 = 3 + 78 = 15 + 66 = 36 + 55.
		

Crossrefs

Probably differs from A053587 only at n=1, 2, 4.

Extensions

a(23)-a(26) from Donovan Johnson, May 24 2009
a(27)-a(28) from Donovan Johnson, Mar 20 2013
Showing 1-4 of 4 results.