cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052548 a(n) = 2^n + 2.

Original entry on oeis.org

3, 4, 6, 10, 18, 34, 66, 130, 258, 514, 1026, 2050, 4098, 8194, 16386, 32770, 65538, 131074, 262146, 524290, 1048578, 2097154, 4194306, 8388610, 16777218, 33554434, 67108866, 134217730, 268435458, 536870914, 1073741826, 2147483650
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

The most "compact" sequence that satisfies Bertrand's Postulate. Begin with a(1) = 3 = n, then 2n - 2 = 4 = n_1, 2n_1 - 2 = 6 = n_2, 2n_2 - 2 = 10, etc. = a(n), hence there is guaranteed to be at least one prime between successive members of the sequence. - Andrew S. Plewe, Dec 11 2007
Number of 2-sided prudent polygons of area n, for n>0, see Beaton, p. 5. - Jonathan Vos Post, Nov 30 2010

Crossrefs

Programs

  • Haskell
    a052548 = (+ 2) . a000079
    a052548_list = iterate ((subtract 2) . (* 2)) 3
    -- Reinhard Zumkeller, Sep 05 2015
  • Magma
    [2^n + 2: n in [0..35]]; // Vincenzo Librandi, Apr 29 2011
    
  • Maple
    spec := [S,{S=Union(Sequence(Union(Z,Z)),Sequence(Z),Sequence(Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    2^Range[0,40]+2 (* Harvey P. Dale, Jun 26 2012 *)
  • PARI
    a(n)=1<Charles R Greathouse IV, Nov 20 2011
    

Formula

G.f.: (3-5*x)/((1-2*x)*(1-x)) = (3-5*x)/(1 - 3*x + 2*x^2) = 2/(1-x) + 1/(1-2*x).
a(0)=3, a(1)=4, a(n) = 3*a(n-1) - 2*a(n-2).
a(n) = A058896(n)/A000918(n), for n>0. - Reinhard Zumkeller, Feb 14 2009
a(n) = A173786(n,1), for n>0. - Reinhard Zumkeller, Feb 28 2010
a(n)*A000918(n) = A028399(2*n), for n>0. - Reinhard Zumkeller, Feb 28 2010
a(0)=3, a(n) = 2*a(n-1) - 2. - Vincenzo Librandi, Aug 06 2010
E.g.f.: (2 + exp(x))*exp(x). - Ilya Gutkovskiy, Aug 16 2016

Extensions

More terms from James Sellers, Jun 06 2000