A052760
Expansion of e.g.f.: x^2*(exp(x)-1)^2.
Original entry on oeis.org
0, 0, 0, 0, 24, 120, 420, 1260, 3472, 9072, 22860, 56100, 134904, 319176, 745108, 1719900, 3931680, 8912352, 20053404, 44825940, 99613960, 220200120, 484441188, 1061157900, 2315254704, 5033163600, 10905189100, 23555209860, 50734299672, 108984793512
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
[0,0,0] cat [n*(n-1)*(2^n-8)/4: n in [3..30]]; // Vincenzo Librandi, May 05 2013
-
spec := [S,{B=Set(Z,1 <= card),S=Prod(B,B,Z,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Part[#, Range[1, Length[#], 1]]&@(Array[#!&, Length[#], 0] #)&@CoefficientList[Series[x^2 Exp[x]^2 - 2 Exp[x] x^2 + x^2, {x, 0, 30}], x]//ExpandAll (* Vincenzo Librandi, May 05 2013 *)
-
a(n) = if(n<4, 0, n*(n-1)*(2^n-8)/4); \\ Joerg Arndt, May 06 2013
A052761
a(n) = 3!*n*S(n-1,3), where S denotes the Stirling numbers of second kind.
Original entry on oeis.org
0, 0, 0, 0, 24, 180, 900, 3780, 14448, 52164, 181500, 615780, 2052072, 6749028, 21976500, 71007300, 228009696, 728451972, 2317445100, 7346047140, 23213772120, 73156412196, 229989358500, 721474964100, 2258832312144, 7059480120900, 22026886599900
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{B=Set(Z,1 <= card),S=Prod(B,B,B,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Join[{0},Table[3!*n*StirlingS2[n-1,3],{n,30}]] (* Harvey P. Dale, Feb 07 2015 *)
-
a(n)={if(n>=1, 3!*n*stirling(n-1, 3, 2), 0)} \\ Andrew Howroyd, Aug 08 2020
Better description from Victor Adamchik (adamchik(AT)cs.cmu.edu), Jul 19 2001
A052776
a(n) = 4!*n*Stirling2(n-1,4).
Original entry on oeis.org
0, 0, 0, 0, 0, 120, 1440, 10920, 67200, 367416, 1864800, 9003720, 41976000, 190788312, 850930080, 3741028200, 16264684800, 70093951608, 299953709280, 1276255985160, 5404640136000, 22796986414104, 95836788986400, 401733800351400, 1679813323056000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 733
- Index entries for linear recurrences with constant coefficients, signature (20,-170,800,-2273,3980,-4180,2400,-576).
-
spec := [S,{B=Set(Z,1 <= card),S=Prod(Z,B,B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Join[{0},Table[4!*n*StirlingS2[n-1,4],{n,30}]] (* Harvey P. Dale, Dec 24 2014 *)
-
a(n)={if(n>=1, 4!*n*stirling(n-1, 4, 2), 0)} \\ Andrew Howroyd, Aug 08 2020
Better description from Victor Adamchik (adamchik(AT)cs.cmu.edu), Jul 19 2001
A363603
Expansion of e.g.f. (1/4)*(exp(x)-x-1)*(exp(x)-1)^2.
Original entry on oeis.org
3, 20, 90, 343, 1197, 3966, 12720, 39941, 123651, 379132, 1154790, 3501219, 10581465, 31908218, 96068700, 288926977, 868288239, 2608010424, 7830584850, 23505386015, 70544469573, 211692128950, 635198021640, 1905845723133, 5718057263067
Offset: 4
4*a(5)=80 since the ordered set partitions are the following: 30 of type {1,2}{3,4},{5}; 30 of type {1,2},{3},{4,5}; 20 of type {1,2,3},{4},{5}.
-
A363603[n_]:=(3^n-3(2^n-1))/4-(n/2)(2^(n-2)-1);Array[A363603,40,4] (* or *)
LinearRecurrence[{9,-31,51,-40,12},{3,20,90,343,1197},40] (* Paolo Xausa, Nov 18 2023 *)
A052785
a(n) = 5!*n*Stirling2(n-1, 5).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 720, 12600, 134400, 1134000, 8341200, 56133000, 355291200, 2151864000, 12614281680, 72135063000, 404672486400, 2236228722000, 12209943566160, 66024457842600, 354214283304000, 1887999348060000, 10008933180578640, 52820388477271800, 277680637970208000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 742
- Index entries for linear recurrences with constant coefficients, signature (30,-395,3000,-14523,46710,-100805,143700,-129076,65760,-14400).
-
spec := [S,{B=Set(Z,1 <= card),S=Prod(Z,B,B,B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
a(n)={if(n>=1, 5!*n*stirling(n-1, 5, 2), 0)} \\ Andrew Howroyd, Aug 08 2020
Name changed and terms a(21) and beyond from
Andrew Howroyd, Aug 08 2020
Showing 1-5 of 5 results.
Comments