cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052899 Expansion of g.f.: (1-2*x) / ((x-1)*(4*x^2+2*x-1)).

Original entry on oeis.org

1, 1, 5, 13, 45, 141, 461, 1485, 4813, 15565, 50381, 163021, 527565, 1707213, 5524685, 17878221, 57855181, 187223245, 605867213, 1960627405, 6344723661, 20531956941, 66442808525, 215013444813, 695798123725, 2251650026701, 7286492548301, 23579585203405, 76305140600013
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

From L. Edson Jeffery, Apr 19 2011: (Start)
Let A be the unit-primitive matrix (see [Jeffery])
A = A_(10,4) =
(0 0 0 0 1)
(0 0 0 2 0)
(0 0 2 0 1)
(0 2 0 2 0)
(2 0 2 0 1).
Then a(n) = (1/5)*trace(A^n). (End)
a(n-1)+1 is the number of paths to reach a position outside a 4 X 4 chessboard after n steps, starting in one of the corners, when performing a walk with unit steps on the square lattice. - Ruediger Jehn, Oct 10 2024

Crossrefs

Cf. A084057.

Programs

  • Magma
    [(1/5)*(2^(n+1)*Lucas(n)+1): n in [0..50]]; // Vincenzo Librandi, Apr 20 2011
    
  • Maple
    spec := [S,{S=Sequence(Prod(Union(Sequence(Union(Z,Z)),Z,Z),Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[(1-2x)/((x-1)(4x^2+2x-1)),{x,0,40}],x] (* or *) LinearRecurrence[{3,2,-4},{1,1,5},40] (* Harvey P. Dale, Jul 10 2017 *)
  • Maxima
    makelist(coeff(taylor((1-2*x)/(1-3*x-2*x^2+4*x^3),x,0,n),x,n),n,0,25); /* Bruno Berselli, May 30 2011 */
  • Sage
    from sage.combinat.sloane_functions import recur_gen2b
    it = recur_gen2b(1,1,2,4, lambda n:-1)
    [next(it) for i in range(1,28)] # Zerinvary Lajos, Jul 09 2008
    

Formula

Recurrence: {a(1)=1, a(0)=1, -4*a(n) - 2*a(n+1) + a(n+2) + 1 = 0}.
a(n) = Sum((-1/25)*(-1-8*_alpha+4*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(1-3*_Z-2*_Z^2+4*_Z^3)).
a(n)/a(n-1) tends to (1 + sqrt(5)) = 3.236067... - Gary W. Adamson, Mar 01 2008
a(n) = (1/5) * Sum_{k=1..5} ((x_k)^4-3*(x_k)^2+1), x_k=2*cos((2*k-1)*Pi/10). Also, a(n)/a(n-1) -> spectral radius of matrix A_(10,4) above. - L. Edson Jeffery, Apr 19 2011
a(n) = (2*A087131(n)+1)/5. - Bruno Berselli, Apr 20 2011
a(n) = (2/5)*((1+sqrt(5))^n + (1-sqrt(5))^n + 1/2). - Ruediger Jehn, Sep 29 2024
E.g.f.: exp(x)*(1 + 4*cosh(sqrt(5)*x))/5. - Stefano Spezia, Oct 02 2024

Extensions

More terms from James Sellers, Jun 08 2000