A052899 Expansion of g.f.: (1-2*x) / ((x-1)*(4*x^2+2*x-1)).
1, 1, 5, 13, 45, 141, 461, 1485, 4813, 15565, 50381, 163021, 527565, 1707213, 5524685, 17878221, 57855181, 187223245, 605867213, 1960627405, 6344723661, 20531956941, 66442808525, 215013444813, 695798123725, 2251650026701, 7286492548301, 23579585203405, 76305140600013
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 875
- L. E. Jeffery, Unit-primitive matrices
- Index entries for linear recurrences with constant coefficients, signature (3,2,-4).
Crossrefs
Cf. A084057.
Programs
-
Magma
[(1/5)*(2^(n+1)*Lucas(n)+1): n in [0..50]]; // Vincenzo Librandi, Apr 20 2011
-
Maple
spec := [S,{S=Sequence(Prod(Union(Sequence(Union(Z,Z)),Z,Z),Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
CoefficientList[Series[(1-2x)/((x-1)(4x^2+2x-1)),{x,0,40}],x] (* or *) LinearRecurrence[{3,2,-4},{1,1,5},40] (* Harvey P. Dale, Jul 10 2017 *)
-
Maxima
makelist(coeff(taylor((1-2*x)/(1-3*x-2*x^2+4*x^3),x,0,n),x,n),n,0,25); /* Bruno Berselli, May 30 2011 */
-
Sage
from sage.combinat.sloane_functions import recur_gen2b it = recur_gen2b(1,1,2,4, lambda n:-1) [next(it) for i in range(1,28)] # Zerinvary Lajos, Jul 09 2008
Formula
Recurrence: {a(1)=1, a(0)=1, -4*a(n) - 2*a(n+1) + a(n+2) + 1 = 0}.
a(n) = Sum((-1/25)*(-1-8*_alpha+4*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(1-3*_Z-2*_Z^2+4*_Z^3)).
a(n)/a(n-1) tends to (1 + sqrt(5)) = 3.236067... - Gary W. Adamson, Mar 01 2008
a(n) = (1/5) * Sum_{k=1..5} ((x_k)^4-3*(x_k)^2+1), x_k=2*cos((2*k-1)*Pi/10). Also, a(n)/a(n-1) -> spectral radius of matrix A_(10,4) above. - L. Edson Jeffery, Apr 19 2011
a(n) = (2*A087131(n)+1)/5. - Bruno Berselli, Apr 20 2011
a(n) = (2/5)*((1+sqrt(5))^n + (1-sqrt(5))^n + 1/2). - Ruediger Jehn, Sep 29 2024
E.g.f.: exp(x)*(1 + 4*cosh(sqrt(5)*x))/5. - Stefano Spezia, Oct 02 2024
Extensions
More terms from James Sellers, Jun 08 2000
Comments