cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A087131 a(n) = 2^n*Lucas(n), where Lucas = A000032.

Original entry on oeis.org

2, 2, 12, 32, 112, 352, 1152, 3712, 12032, 38912, 125952, 407552, 1318912, 4268032, 13811712, 44695552, 144637952, 468058112, 1514668032, 4901568512, 15861809152, 51329892352, 166107021312, 537533612032, 1739495309312
Offset: 0

Views

Author

Paul Barry, Aug 16 2003

Keywords

Comments

Number of ways to tile an n-bracelet with two types of colored squares and four types of colored dominoes.
Inverse binomial transform of even Lucas numbers (A014448).
From L. Edson Jeffery, Apr 25 2011: (Start)
Let A be the unit-primitive matrix (see [Jeffery])
A=A_(10,4)=
(0 0 0 0 1)
(0 0 0 2 0)
(0 0 2 0 1)
(0 2 0 2 0)
(2 0 2 0 1).
Then a(n)=(Trace(A^n)-1)/2. Also a(n)=Trace((2*A_(5,1))^n), where A_(5,1)=[(0,1); (1,1)] is also a unit-primitive matrix. (End)
Also the number of connected dominating sets in the n-sun graph for n >= 3. - Eric W. Weisstein, May 02 2017
Also the number of total dominating sets in the n-sun graph for n >= 3. - Eric W. Weisstein, Apr 27 2018

References

  • Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, identity 237, p. 132.

Crossrefs

First differences of A006483 and A103435.

Programs

  • Magma
    [2] cat [2^n*Lucas(n): n in [1..30]]; // G. C. Greubel, Dec 18 2017
  • Mathematica
    Table[Tr[MatrixPower[{{2, 2}, {2, 0}}, x]], {x, 1, 20}] (* Artur Jasinski, Jan 09 2007 *)
    Join[{2}, Table[2^n LucasL[n], {n, 20}]] (* Eric W. Weisstein, May 02 2017 *)
    Join[{2}, 2^# LucasL[#] & [Range[20]]] (* Eric W. Weisstein, May 02 2017 *)
    LinearRecurrence[{2, 4}, {2, 12}, {0, 20}] (* Eric W. Weisstein, Apr 27 2018 *)
    CoefficientList[Series[(2 (-1 + x))/(-1 + 2 x + 4 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 27 2018 *)
  • PARI
    for(n=0,30, print1(if(n==0, 2, 2^n*(fibonacci(n+1) + fibonacci(n-1))), ", ")) \\ G. C. Greubel, Dec 18 2017
    
  • PARI
    first(n) = Vec(2*(1-x)/(1-2*x-4*x^2) + O(x^n)) \\ Iain Fox, Dec 19 2017
    
  • Sage
    [lucas_number2(n,2,-4) for n in range(0, 25)] # Zerinvary Lajos, Apr 30 2009
    

Formula

a(n) = 2*A084057(n).
Recurrence: a(n) = 2a(n-1) + 4a(n-2), a(0)=2, a(1)=2.
G.f.: 2*(1-x)/(1-2*x-4*x^2).
a(n) = (1+sqrt(5))^n + (1-sqrt(5))^n.
For n>=2, a(n) = Trace of matrix [({2,2},{2,0})^n]. - Artur Jasinski, Jan 09 2007
a(n) = 2*[A063727(n)-A063727(n-1)]. - R. J. Mathar, Nov 16 2007
a(n) = (5*A052899(n)-1)/2. - L. Edson Jeffery, Apr 25 2011
a(n) = [x^n] ( 1 + x + sqrt(1 + 2*x + 5*x^2) )^n for n >= 1. - Peter Bala, Jun 23 2015
Sum_{n>=1} 1/a(n) = (1/2) * A269992. - Amiram Eldar, Nov 17 2020
From Amiram Eldar, Jan 15 2022: (Start)
a(n) == 2 (mod 10).
a(n) = 5 * A014334(n) + 2.
a(n) = 10 * A014335(n) + 2. (End)

Extensions

Edited by Ralf Stephan, Feb 08 2005

A189318 Expansion of 5*(1-2*x)/(1-3*x-2*x^2+4*x^3).

Original entry on oeis.org

5, 5, 25, 65, 225, 705, 2305, 7425, 24065, 77825, 251905, 815105, 2637825, 8536065, 27623425, 89391105, 289275905, 936116225, 3029336065, 9803137025, 31723618305, 102659784705, 332214042625, 1075067224065, 3478990618625, 11258250133505
Offset: 0

Views

Author

L. Edson Jeffery, Apr 20 2011

Keywords

Comments

(Start) Let A be the unit-primitive matrix (see [Jeffery])
A=A_(10,4)=
(0 0 0 0 1)
(0 0 0 2 0)
(0 0 2 0 1)
(0 2 0 2 0)
(2 0 2 0 1).
Then a(n)=Trace(A^n). (End)
Evidently one of a class of accelerator sequences for Catalan's constant based on traces of successive powers of a unit-primitive matrix A_(N,r) (0

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[5(1-2x)/(1-3x-2x^2+4x^3),{x,0,30}],x] (* or *) LinearRecurrence[{3,2,-4},{5,5,25},30] (* Harvey P. Dale, Jun 02 2014 *)
  • PARI
    Vec(5*(1-2*x)/(1-3*x-2*x^2+4*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012

Formula

G.f.: 5*(1-2*x)/(1-3*x-2*x^2+4*x^3).
a(n)=3*a(n-1)+2*a(n-2)-4*a(n-3), n>3, a(0)=5, a(1)=5, a(2)=25, a(3)=65.
a(n)=Sum_{k=1..5} ((w_k)^4-3*(w_k)^2+1)^n, w_k=2*cos((2*k-1)*Pi/10).
a(n)=1+2*(1-Sqrt(5))^n+2*(1+Sqrt(5))^n.
a(n)=5*A052899(n).

A081057 E.g.f.: Sum_{n>=0} a(n)*x^n/n! = {Sum_{n>=0} F(n+1)*x^n/n!}^2, where F(n) is the n-th Fibonacci number.

Original entry on oeis.org

1, 2, 6, 18, 58, 186, 602, 1946, 6298, 20378, 65946, 213402, 690586, 2234778, 7231898, 23402906, 75733402, 245078426, 793090458, 2566494618, 8305351066, 26876680602, 86974765466, 281456253338, 910811568538, 2947448150426, 9538142575002, 30866077751706
Offset: 0

Author

Paul D. Hanna, Mar 03 2003

Keywords

Comments

a(n) ~ c*(sqrt(5)+1)^n, where c = (sqrt(5)+3)/10.
The inverse binomial transform is 1,1,3,5,... (1 followed by A056487). Partial sum of 1,1,4,12,..., i.e., 1 plus n-th partial sum of A087206. [R. J. Mathar, Oct 04 2010]
From R. J. Mathar, Oct 12 2010: (Start)
Apparently the row n=4 of an array which counts walks with k steps on an n X n board, starting at a corner, each step to one of the <= 4 adjacent squares:
1,2,4,8,16,32,64,128,256,512,1024,2048,4096,
1,2,6,16,48,128,384,1024,3072,8192,24576,65536,196608,
1,2,6,18,58,186,602,1946,6298,20378,65946,213402,690586,
1,2,6,18,60,198,684,2322,8100,27702,96876,331938,1161540,
1,2,6,18,60,200,698,2432,8658,30762,110374,395428,1422916,
1,2,6,18,60,200,700,2448,8800,31552,115104,418176,1537536,
1,2,6,18,60,200,700,2450,8818,31730,116182,425172,1573416,
1,2,6,18,60,200,700,2450,8820,31750,116400,426600,1583400,
1,2,6,18,60,200,700,2450,8820,31752,116422,426862,1585246,
1,2,6,18,60,200,700,2450,8820,31752,116424,426886,1585556,
1,2,6,18,60,200,700,2450,8820,31752,116424,426888,1585582,
(End)
Decomposing rook walks of length=n on a 4 X 4 board into combinations of independent vertical and horizontal walks in 4-wide corridors leads to an exponential convolution of the Fibonacci numbers, cf. A052899. [David Scambler, Oct 17 2010]

Crossrefs

a(n) = A052899(n-1) + A052899(n). a(n) - 2*a(n-1) = A014334(n).
Row sums of A109906.

Formula

G.f.: (1-x-2x^2)/(1-3x-2x^2+4x^3). - Michael Somos, Mar 04 2003
a(n) - 2*a(n-1) = A014334(n), n > 0. - Vladeta Jovovic, Mar 05 2003
From Vladeta Jovovic, Mar 05 2003: (Start)
a(n) = 2/5 + (3/10 - 1/10*5^(1/2))*(1 - 5^(1/2))^n + (3/10 + 1/10*5^(1/2))*(1 + 5^(1/2))^n.
Recurrence: a(n) = 3*a(n-1) + 2*a(n-2) - 4*a(n-3).
G.f.: (1+x)*(1-2*x)/(1-2*x-4*x^2)/(1-x). (End)
a(n) = Sum_{k=0..n} ( F(k+1) * F(n-k+1) * C(n,k) ), where F(k) = Fibonacci(k). - David Scambler, Oct 17 2010
a(n) = (2^n*Lucas(n+2)+2)/5. - Ira M. Gessel, Mar 06 2022

Extensions

Corrected and extended by Vladeta Jovovic and Michael Somos, Mar 05 2003

A376837 a(n) is the number of paths to reach a position outside an 8 X 8 chessboard after n steps, starting in one of the corners, when performing a walk with unit steps on the square lattice.

Original entry on oeis.org

2, 2, 6, 12, 40, 100, 350, 982, 3542, 10738, 39556, 127272, 475332, 1602458, 6030830, 21056830, 79514918, 284645860, 1075801928, 3917238476, 14799350958, 54498514998, 205721183302, 763140403282, 2878050335900, 10726898070952, 40421307665420, 151112554663930, 569043610134622, 2131459901180670
Offset: 1

Author

Ruediger Jehn, Oct 06 2024

Keywords

Comments

a(n)/4^n is the probability that the 1-step rook falls off the chess board at step n. The average number of steps it takes this piece to fall off the board is Sum_{n>0} n*a(n)/4^n = A376606(8)/A376607(8) = 4374/901 or approximately 4.855 steps.
Because of the mirror symmetry of the problem to the board diagonal, all terms are even.

Examples

			a(3) = 6. Starting on square a1 there are 6 paths to leave the chess board: up-up-left, up-down-left, up-down-down, right-right-down, right-left-down and right-left-left.
		

Crossrefs

Cf. A376606, A376607, {A052899}+1 is the analog for the 4X4 chessboard.

Programs

  • Mathematica
    LinearRecurrence[{5, 9, -69, 21, 225, -171, -162, 108, 32, -16}, {2, 2, 6, 12, 40, 100, 350, 982, 3542, 10738}, 30] (* Hugo Pfoertner, Oct 16 2024 *)
  • PARI
    Vec(2*(1 - 4*x - 11*x^2 + 51*x^3 + 11*x^4 - 143*x^5 + 42*x^6 + 78*x^7 - 12*x^8 - 8*x^9)/((1 - 2*x)*(1 - 3*x^2 + x^3)*(1 - 3*x + x^3)*(1 - 12*x^2 - 8*x^3)) + O(x^30)) \\ Andrew Howroyd, Oct 16 2024

Formula

a(n) == 0 (mod 2).
G.f.: 2*x*(1 - 4*x - 11*x^2 + 51*x^3 + 11*x^4 - 143*x^5 + 42*x^6 + 78*x^7 - 12*x^8 - 8*x^9)/((1 - 2*x)*(1 - 3*x^2 + x^3)*(1 - 3*x + x^3)*(1 - 12*x^2 - 8*x^3)). - Andrew Howroyd, Oct 16 2024
Showing 1-4 of 4 results.