cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052905 a(n) = (n^2 + 7*n + 2)/2.

Original entry on oeis.org

1, 5, 10, 16, 23, 31, 40, 50, 61, 73, 86, 100, 115, 131, 148, 166, 185, 205, 226, 248, 271, 295, 320, 346, 373, 401, 430, 460, 491, 523, 556, 590, 625, 661, 698, 736, 775, 815, 856, 898, 941, 985, 1030, 1076, 1123, 1171, 1220, 1270, 1321, 1373, 1426, 1480
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Starting 1, 5, 10, 16, 23, ... gives binomial transform of (1, 4, 1, 0, 0, 0, ...). Row sums of triangle A134199. - Gary W. Adamson, Jul 25 2007
If Y_i (i=1,2,3,4,5) are 2-blocks of an n-set X then, for n >= 10, a(n-4) is the number of (n-2)-subsets of X intersecting each Y_i (i=1,2,3,4,5). - Milan Janjic, Nov 09 2007
This sequence is related to A159920 by A159920(n+1) = n*a(n) - Sum_{i=0..n-1} a(i) for n > 0. - Bruno Berselli, Feb 28 2014
Numbers m > 0 such that 8m+41 is a square. - Bruce J. Nicholson, Jul 28 2017

Examples

			Illustration of initial terms:
.                                                                    o
.                                                                  o o
.                                                    o           o o o
.                                                  o o         o o o o
.                                      o         o o o       o o o o o
.                                    o o       o o o o     o o o o o o
.                          o       o o o     o o o o o   o . . . . . o
.                        o o     o o o o   o . . . . o   o . . . . . o
.                o     o o o   o . . . o   o . . . . o   o . . . . . o
.              o o   o . . o   o . . . o   o . . . . o   o . . . . . o
.        o   o . o   o . . o   o . . . o   o . . . . o   o . . . . . o
.      o o   o . o   o . . o   o . . . o   o . . . . o   o . . . . . o
.  o   o o   o o o   o o o o   o o o o o   o o o o o o   o o o o o o o
----------------------------------------------------------------------
.  1     5      10        16          23            31              40
[_Bruno Berselli_, Feb 28 2014]
		

Crossrefs

Programs

  • Maple
    spec := [S,{S=Prod(Sequence(Z),Sequence(Z),Union(Sequence(Z),Z,Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
    seq(binomial(n,2)-5, n=4..55); # Zerinvary Lajos, Jan 13 2007
    a:=n->sum((n-4)/2, j=0..n): seq(a(n)-2, n=5..56); # Zerinvary Lajos, Apr 30 2007
    with (combinat):seq((fibonacci(3, n)+n-11)/2, n=3..54); # Zerinvary Lajos, Jun 07 2008
    a:=n->sum(k, k=0..n):seq(a(n)/2+sum(k, k=5..n)/2, n=3..54); # Zerinvary Lajos, Jun 10 2008
  • Mathematica
    i=4;s=1;lst={s};Do[s+=n+i;If[s>=0, AppendTo[lst, s]], {n, 0, 6!, 1}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 30 2008 *)
    k = 3; NestList[(k++; # + k) &, 1, 45] (* Robert G. Wilson v, Feb 03 2011 *)
    Table[(n^2 + 7n + 2)/2, {n, 0, 49}] (* Alonso del Arte, Feb 03 2011 *)
    LinearRecurrence[{3,-3,1},{1,5,10},60] (* Harvey P. Dale, Sep 15 2018 *)
  • PARI
    a(n)=n*(n+7)/2+1 \\ Charles R Greathouse IV, Nov 20 2011

Formula

G.f.: (-2*x+2*x^2-1)/(-1+x)^3.
Recurrence: {a(0)=1, a(1)=5, a(2)=10, -2*a(n)+n^2+7*n+2}.
a(n) = n+a(n-1)+3, with n>0, a(0)=1. - Vincenzo Librandi, Aug 06 2010
E.g.f.: (1/2)*(x^2 + 8*x + 2)*exp(x). - G. C. Greubel, Jul 13 2017
Sum_{n>=0} 1/a(n) = 19/20 + 2*Pi*tan(sqrt(41)*Pi/2)/sqrt(41). - Amiram Eldar, Dec 13 2022

Extensions

More terms from James Sellers, Jun 08 2000
Edited by Charles R Greathouse IV, Jul 25 2010