A052905 a(n) = (n^2 + 7*n + 2)/2.
1, 5, 10, 16, 23, 31, 40, 50, 61, 73, 86, 100, 115, 131, 148, 166, 185, 205, 226, 248, 271, 295, 320, 346, 373, 401, 430, 460, 491, 523, 556, 590, 625, 661, 698, 736, 775, 815, 856, 898, 941, 985, 1030, 1076, 1123, 1171, 1220, 1270, 1321, 1373, 1426, 1480
Offset: 0
Examples
Illustration of initial terms: . o . o o . o o o o . o o o o o o . o o o o o o o o o . o o o o o o o o o o o o . o o o o o o o o o o . . . . . o . o o o o o o o . . . . o o . . . . . o . o o o o o . . . o o . . . . o o . . . . . o . o o o . . o o . . . o o . . . . o o . . . . . o . o o . o o . . o o . . . o o . . . . o o . . . . . o . o o o . o o . . o o . . . o o . . . . o o . . . . . o . o o o o o o o o o o o o o o o o o o o o o o o o o o o o ---------------------------------------------------------------------- . 1 5 10 16 23 31 40 [_Bruno Berselli_, Feb 28 2014]
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Charles Cratty, Samuel Erickson, Frehiwet Negass, and Lara Pudwell, Pattern Avoidance in Double Lists, Involve, Vol. 10, No. 3 (2017), pp. 379-398; preprint, 2015.
- Milan Janjic, Two Enumerative Functions.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 884.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Maple
spec := [S,{S=Prod(Sequence(Z),Sequence(Z),Union(Sequence(Z),Z,Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20); seq(binomial(n,2)-5, n=4..55); # Zerinvary Lajos, Jan 13 2007 a:=n->sum((n-4)/2, j=0..n): seq(a(n)-2, n=5..56); # Zerinvary Lajos, Apr 30 2007 with (combinat):seq((fibonacci(3, n)+n-11)/2, n=3..54); # Zerinvary Lajos, Jun 07 2008 a:=n->sum(k, k=0..n):seq(a(n)/2+sum(k, k=5..n)/2, n=3..54); # Zerinvary Lajos, Jun 10 2008
-
Mathematica
i=4;s=1;lst={s};Do[s+=n+i;If[s>=0, AppendTo[lst, s]], {n, 0, 6!, 1}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 30 2008 *) k = 3; NestList[(k++; # + k) &, 1, 45] (* Robert G. Wilson v, Feb 03 2011 *) Table[(n^2 + 7n + 2)/2, {n, 0, 49}] (* Alonso del Arte, Feb 03 2011 *) LinearRecurrence[{3,-3,1},{1,5,10},60] (* Harvey P. Dale, Sep 15 2018 *)
-
PARI
a(n)=n*(n+7)/2+1 \\ Charles R Greathouse IV, Nov 20 2011
Formula
G.f.: (-2*x+2*x^2-1)/(-1+x)^3.
Recurrence: {a(0)=1, a(1)=5, a(2)=10, -2*a(n)+n^2+7*n+2}.
a(n) = n+a(n-1)+3, with n>0, a(0)=1. - Vincenzo Librandi, Aug 06 2010
E.g.f.: (1/2)*(x^2 + 8*x + 2)*exp(x). - G. C. Greubel, Jul 13 2017
Sum_{n>=0} 1/a(n) = 19/20 + 2*Pi*tan(sqrt(41)*Pi/2)/sqrt(41). - Amiram Eldar, Dec 13 2022
Extensions
More terms from James Sellers, Jun 08 2000
Edited by Charles R Greathouse IV, Jul 25 2010
Comments